Python-geemap教程
文章平均质量分 94
遥感AI实战
公众号:遥感AI实战,211博士
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于EC JRC 2020全球森林覆盖图与MODIS NDVI的森林健康动态监测(Python版本)
本文介绍了如何将Google Earth Engine (GEE)的JavaScript代码转化为Python+geemap实现,用于森林覆盖和NDVI活力分析。通过初始化环境、加载森林数据和MODIS NDVI产品,计算植被活力并识别潜在退化区域,最后实现交互式地图可视化。相比GEE Code Editor,Python版本具有更灵活的图例控制、更好的本地数据整合能力以及更便捷的科研流程集成优势,适合更复杂的遥感分析需求。文章还展望了后续可能的扩展方向,如多年份趋势分析和高分辨率数据细化。原创 2025-08-04 02:18:08 · 770 阅读 · 0 评论 -
第一篇:【Python-geemap教程(三)上】3D地形渲染与Landsat NDVI计算
本文介绍了使用Python+geemap实现3D地形渲染和植被指数计算的方法。首先基于SRTM数据展示了青藏高原的3D地形可视化,包括高程、坡度、坡向的计算与呈现。接着以长江中游为例,利用Landsat 8影像计算NDVI植被指数,通过辐射定标和波段运算获取植被覆盖信息。文章包含详细的代码解释和可视化参数设置,帮助读者掌握地理空间数据的多维分析技术,为后续动态植被监测等应用奠定基础。原创 2025-07-31 14:55:35 · 929 阅读 · 0 评论 -
第二篇:【Python-geemap教程】第三篇(下):MODIS时序NDVI动态可视化——以湖南省为例
本文介绍了如何使用Python中的geemap库对MODIS时序NDVI数据进行处理与可视化分析。以湖南省为例,展示了2018-2023年植被指数的动态变化监测方法。主要内容包括:初始化GEE连接、加载MODIS NDVI时序数据、定义可视化参数、创建时间滑块动画等核心步骤。该技术可应用于农业监测、生态保护和气候变化研究等领域,通过时间序列分析揭示植被覆盖变化规律。文中提供了完整的代码实现和详细解析,帮助读者掌握时序遥感数据的处理与可视化技巧。原创 2025-07-31 14:51:50 · 936 阅读 · 0 评论 -
【Python-geemap教程(二)】从GEE JavaScript到geemap Python——LUCC变化驱动分析实现
本文探讨了如何将Google Earth Engine(GEE)的JavaScript代码迁移至Python的geemap框架,以土地利用/覆盖变化(LUCC)驱动分析为例。研究对比了两种语言在运行环境、数据交互、可视化等方面的核心差异,并详细展示了代码迁移过程。Python版本通过geemap结合GEE遥感数据与本地Python生态(如pandas、scikit-learn),在数据预处理、采样分析、机器学习建模等环节展现出更大优势。原创 2025-07-27 19:32:51 · 880 阅读 · 0 评论 -
【Python-geemap教程】开篇:基于Miniconda搭建geemap与GEE开发环境
本教程详细介绍了如何基于Miniconda搭建geemap开发环境,为地理空间分析奠定基础。主要内容包括:安装轻量级的Miniconda包管理工具;创建Python 3.8的独立Conda环境;安装Jupyter Lab交互开发环境;配置geemap和GEE API;完成GEE身份认证;并通过土地覆盖数据可视化案例验证环境可用性。该环境具有隔离性好、可复现性强的特点,能有效避免依赖冲突,为后续geemap应用开发提供稳定支持。原创 2025-07-27 15:38:21 · 1373 阅读 · 0 评论
分享