Python基础
文章平均质量分 77
遥感AI实战
公众号:遥感AI实战,211博士
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
遥感&深度学习入门实战教程|案例①:感知机原理与实现
本文总结了《Sklearn入门实战教程》系列内容,介绍了传统机器学习在遥感领域的完整应用流程,包括预处理、分类器、特征选择等环节。随着数据复杂度提升,传统方法面临高维非线性特征、空间关系建模等挑战,引出了深度学习技术的优势。通过两个案例展示了感知机原理及实现:在二维线性可分数据上成功分类,但在真实KSC高光谱数据中表现有限,为后续多层感知机(MLP)等更复杂模型奠定基础。文章预告将介绍如何通过隐藏层和激活函数增强网络非线性能力,使用PyTorch构建MLP分类器。原创 2025-08-30 23:11:34 · 364 阅读 · 0 评论 -
遥感&机器学习入门实战教程|Sklearn案例⑳:支持向量机(SVM)分类
本文介绍了支持向量机(SVM)在高光谱遥感分类中的应用。SVM因其小样本友好、非线性处理能力和参数灵活性成为遥感领域的经典方法。文章详细解析了核函数选择、惩罚系数C和gamma等关键参数的作用,并提供了完整的KSC数据分类代码示例,包括数据预处理、模型训练、评估和整图预测。通过混淆矩阵和参数对比实验,展示了不同超参数对分类效果的影响。最后指出SVM是遥感分类的重要基线方法,建议采用rbf核并通过网格搜索优化参数,为传统机器学习在遥感领域的应用提供了完整解决方案。原创 2025-08-30 23:10:01 · 357 阅读 · 0 评论 -
遥感&机器学习入门实战教程|Sklearn案例⑲:基于邻域的学习(neighbors 模块)
本文介绍了KNN算法在高光谱遥感分类中的应用,重点讲解了sklearn.neighbors模块的使用方法。文章提供了KSC数据集上的完整代码示例,包括数据预处理、模型训练、评估和可视化等步骤。关键点包括:KNN对特征尺度敏感,需先进行标准化;参数选择建议k=5-7、权重为distance、使用L2距离;半径邻域分类适用于样本密度不均的情况。代码实现了无泄露预处理、分类评估、混淆矩阵分析和整图预测功能,并对比了不同参数组合的效果。结果显示适当调整参数可提高分类精度,该方法可作为遥感分类的实用基线。原创 2025-08-29 12:15:49 · 371 阅读 · 0 评论 -
遥感&机器学习入门实战教程|Sklearn案例⑳:支持向量机(SVM)分类
【摘要】本文介绍了支持向量机(SVM)在高光谱遥感分类中的应用优势,包括小样本友好、非线性扩展和参数灵活可调三大特点。详细解析了SVM的关键参数设置,如核函数选择、惩罚系数C和gamma值调整。通过KSC数据集的完整代码示例,展示了SVM分类的全流程实现,包括数据预处理、模型训练、评估指标计算和整图预测可视化。实验结果表明,SVM在样本有限的情况下能保持较好的分类性能,参数选择对结果影响显著。文章作为Sklearn遥感实战系列的终篇,完整覆盖了从传统机器学习到深度学习的入门路径。原创 2025-08-29 12:15:00 · 472 阅读 · 0 评论 -
遥感&机器学习入门实战教程|Sklearn案例⑱:半监督学习(semi_supervised)
在真实遥感任务里,“有标签像素太少”是家常便饭。的思路是:用少量标注 + 大量未标注样本共同训练,从而提升泛化。本篇聚焦计算 OA/Kappa/报告;同时严格“无泄露”:Scaler/PCA 仅用拟合。原创 2025-08-28 16:41:19 · 1546 阅读 · 0 评论 -
遥感&机器学习入门实战教程|Sklearn案例⑰:决策树与遥感分类(tree 模块)
文章摘要:本文介绍了决策树这一经典分类与回归模型,通过树形结构(节点表示特征条件,分支表示决策结果)实现直观分类。决策树具有结构简单、训练速度快等优点,但也存在过拟合风险。文中提供了KSC数据的决策树分类代码示例,包含数据预处理、模型训练、评估指标(OA/Kappa/混淆矩阵)和可视化(整图预测、决策树结构)。代码实现了无泄露预处理、分层抽样、PCA降维等关键步骤,并展示了分类结果的可视化呈现。原创 2025-08-28 16:38:45 · 434 阅读 · 0 评论 -
遥感&机器学习入门实战教程|Sklearn案例⑯:聚类与无监督分类(cluster 模块)
遥感应用中常面临标注样本不足的问题,如新区域无实地数据、标注成本高等。无监督学习(尤其是聚类方法)可通过光谱特征对像素分组,生成初步分类结果。本文介绍了KMeans、MiniBatchKMeans等常见聚类方法及其在遥感影像处理中的应用,并以KSC数据集为例展示了KMeans、层次聚类和DBSCAN的代码实现与可视化效果。结果表明,聚类虽不能完全替代监督分类,但在缺乏标注样本时具有重要参考价值,可作为样本生成和模式探索的辅助工具。建议优先使用简单高效的KMeans方法,再根据数据特点尝试其他算法。原创 2025-08-27 22:49:32 · 556 阅读 · 0 评论 -
遥感&机器学习入门实战教程|Sklearn案例⑭:数据划分与交叉验证(KSC 真实数据)
本文探讨了遥感影像分类实验中数据集划分的重要性,指出传统train_test_split方法的不足,并介绍了更科学的交叉验证方法。文章通过KSC高光谱数据案例,详细展示了单次分层划分、KFold交叉验证、StratifiedKFold分层交叉验证以及Pipeline的实践应用,强调交叉验证能提供更稳定可靠的模型评估结果。作者建议在样本量有限或类别不均衡时,应采用分层K折交叉验证结合Pipeline的方法,并报告均值±标准差,以获得更科学的实验结果。原创 2025-08-27 22:46:57 · 862 阅读 · 0 评论 -
遥感&机器学习入门实战教程|Sklearn案例⑬:数据集(datasets 模块)
本文介绍了sklearn.datasets模块在机器学习入门中的应用,建议初学者先用内置数据集练习算法,再转向真实遥感数据。文章详细列举了datasets提供的三类功能:内置小数据集(如鸢尾花、手写数字)、公开数据集下载接口(如人脸、新闻数据)和模拟数据生成(如分类、聚类数据)。通过三个示例代码展示了如何加载鸢尾花数据、生成分类数据以及创建非线性分布数据,强调这些工具适合算法调试但不替代真实应用,建议从练习过渡到使用Sentinel等真实遥感影像。原创 2025-08-27 09:24:09 · 421 阅读 · 0 评论 -
遥感&机器学习入门实战教程|Sklearn案例⑫:神经网络(MLP)+ 全图预测
本文介绍了使用sklearn的MLPClassifier实现遥感影像分类的完整流程。通过标准化和PCA降维预处理数据后,构建具有128-64两层结构的MLP神经网络,采用ReLU激活函数和Adam优化器。实验结果表明,该方法能有效完成像素级分类,并提供了OA、Kappa等评估指标及混淆矩阵分析。文章还展示了整图预测结果可视化方法,证明MLP可作为遥感分类的轻量级解决方案。关键参数如隐藏层结构、正则化系数等可灵活调整以优化性能。原创 2025-08-27 09:23:18 · 406 阅读 · 0 评论 -
遥感&机器学习入门实战教程|Sklearn案例⑪:更多分解方法(KernelPCA / DictionaryLearning等)
本文介绍了sklearn.decomposition模块中的三种进阶数据分解方法:KernelPCA通过核函数处理非线性数据,IncrementalPCA支持分批处理大数据集,DictionaryLearning则用于稀疏表示和特征提取。文章通过代码示例对比了三种方法在遥感数据上的降维效果,并针对不同场景提供了方法选择建议:小数据用PCA、非线性数据用KernelPCA、大数据用IncrementalPCA、需要稀疏特征时用DictionaryLearning。文中还包含完整示例代码和可视化结果分析。原创 2025-08-24 16:15:56 · 322 阅读 · 0 评论 -
遥感&机器学习入门实战教程|Sklearn案例⑩:降维与分解(decomposition 模块)
文章摘要:本文介绍了sklearn.decomposition模块中的常见降维方法(PCA、ICA、NMF等)及其在高光谱遥感数据处理中的应用。通过KSC数据集对比实验,展示了不同方法在降维效果上的差异:PCA保留最大方差形成紧凑类团,ICA强调统计独立性使分布更分散,NMF则适用于非负数据分解。文章指出,方法选择需结合具体任务特点,如PCA作基线、ICA用于源分离、NMF适合光谱解混等,并提供了完整的Python实现代码。原创 2025-08-24 16:13:28 · 484 阅读 · 0 评论 -
遥感&机器学习入门实战教程|Sklearn案例⑨:数据预处理(Processing)
本文通过实验对比了四种常见数据预处理方法(StandardScaler、MinMaxScaler、RobustScaler、Normalizer)对遥感图像分类的影响。实验结果显示,预处理方法并不一定越复杂效果越好,其核心作用是使特征尺度合理化。不同预处理方法会改变PCA投影特征分布,但分类精度差异可能不大。其中StandardScaler是最安全的默认选择,其他方法各具特点:MinMaxScaler适合特征范围差异大的情况,RobustScaler抗异常值,Normalizer更适合光谱角分析。原创 2025-08-23 18:55:57 · 251 阅读 · 0 评论 -
遥感&机器学习入门实战教程|Sklearn案例⑧:评估指标(metrics)全解析
本文系统梳理了sklearn中多分类评估指标的使用方法,提供可直接运行的代码示例。主要覆盖以下指标: 基础评估:准确率、平衡准确率、宏/微/加权F1、Kappa系数、MCC 概率质量:ROC-AUC(OvR/OvO)、PR-AUC、对数损失、Top-K准确率 可视化工具:混淆矩阵(计数/归一化)、ROC/PR曲线 代码示例使用随机森林对KSC数据集进行分类,完整演示了从数据预处理到模型评估的全流程。原创 2025-08-23 15:18:21 · 1093 阅读 · 0 评论 -
遥感&机器学习入门实战教程|Sklearn案例⑦:特征选择与重要性分析
本文介绍了一套基于sklearn的高维特征选择工作流,涵盖Filter、Wrapper、Embedded三大方法(Chi2、RFE、随机森林重要性),并提供可视化代码实现。通过特征重要性曲线、入选热图和精度对比三种可视化方式,帮助用户筛选关键特征。文章建议采用"Filter粗筛→Embedded排序→Wrapper精修"的流程,关注多方法共识的稳健特征,并结合领域知识解释结果。这套方法可有效解决高维数据中的维度灾难问题,提升模型效率和解释性。原创 2025-08-22 21:26:46 · 1315 阅读 · 0 评论 -
遥感&机器学习入门实战教程|Sklearn案例⑥:网格搜索与超参数优化
本文介绍了使用sklearn的网格搜索(GridSearchCV)进行模型超参数优化的方法。针对SVM和随机森林模型,演示了如何通过系统化参数组合搜索来提升性能。文章首先区分了模型参数和超参数的概念,指出超参数对模型表现的重要影响。随后提供了完整的代码示例,基于KSC高光谱数据集,展示了SVM的C、gamma参数和随机森林的树数、深度等参数的网格搜索过程,并可视化搜索结果。结果表明,网格搜索能有效找到较优参数组合,其中SVM对参数敏感,而随机森林表现更稳健。最后总结了网格搜索的优势。原创 2025-08-22 16:12:10 · 421 阅读 · 0 评论 -
遥感&机器学习入门实战教程|Sklearn案例⑤:集成学习方法全览
本文基于sklearn框架系统比较了四种集成学习方法在KSC高光谱数据集上的表现。实验采用随机森林、AdaBoost、GBDT、Bagging、Voting和Stacking六种模型,通过标准化+PCA降维预处理后,评估总体精度(OA)和Kappa系数。原创 2025-08-21 17:47:13 · 429 阅读 · 0 评论 -
遥感&机器学习入门实战教程|Sklearn 案例④ :多分类器对比(SVM / RF / kNN / Logistic...)
本文介绍了基于KSC高光谱影像的多分类器对比实验,通过无泄露预处理和五种经典分类器(SVM、随机森林、kNN、逻辑回归、AdaBoost)评估分类性能。首先对数据进行标准化和PCA降维处理,采用分层抽样划分训练/测试集。实验对比了OA(总体精度)、AA(平均精度)、Kappa系数和宏平均F1值四个指标,并通过2×2子图可视化不同分类器的整图预测结果差异。代码实现中重点展示了Sklearn的标准化管道、分层抽样、多分类器训练及指标计算等关键功能。该实验为高光谱影像分类提供了完整的性能评估框架和可视化方案。原创 2025-08-20 16:53:54 · 1256 阅读 · 0 评论 -
遥感&;机器学习入门实战教程 | Sklearn 案例③:PCA + SVM / 随机森林 对比与调参
本文介绍了基于支持向量机(SVM)和随机森林(RF)的高光谱影像分类方法,通过严格的无数据泄露预处理和交叉验证调参构建可靠基线模型。主要内容包括:使用仅训练集数据拟合StandardScaler和PCA降维(30维);采用GridSearchCV优化SVM(C/gamma)和RF(n_estimators/max_depth)超参数;输出完整评估指标和可视化结果(混淆矩阵、参数热力图、PCA累计方差曲线);最终实现整图预测并渲染分类结果。原创 2025-08-19 15:04:00 · 1019 阅读 · 0 评论 -
遥感&机器学习入门实战教程 | Sklearn 案例②:PCA + k-NN 分类与评估
本文提出了一种无数据泄露的高光谱图像分类工作流,基于训练像素拟合StandardScaler和PCA降维,结合k-NN分类器实现端到端分类。方法通过分层抽样划分训练/测试集,严格保证预处理和降维仅在训练数据上完成,避免测试集信息泄露。系统自动保存分类指标(OA/AA/Kappa)、分类报告、混淆矩阵(计数版和归一化版)以及PCA累计解释方差曲线到带时间戳的文件夹,支持整图预测结果可视化输出。实验以KSC数据集为例,提供完整可运行脚本,仅需修改数据路径即可一键复现,实现了从数据预处理到结果归档的全流程自动化。原创 2025-08-18 19:12:29 · 1023 阅读 · 0 评论 -
Python 数据可视化全场景实现(二):三维数据可视化实战
在数据分析与学术研究中,二维图表往往难以全面展示复杂数据的空间关系和分布特征。而三维可视化能够更直观地呈现数据的多维度信息,无论是展示函数曲面、对比分组数据,还是分析空间分布,三维图表都能发挥独特作用。本文将基于 Python 的matplotlib库,结合mpl_toolkits.mplot3d模块,通过五个经典案例,详细讲解三维数据可视化的实现方法,并提供完整可复用的代码。原创 2025-04-27 01:23:46 · 1177 阅读 · 0 评论 -
Python 数据可视化全场景实现(一)
在学术研究与数据分析中,数据可视化是呈现研究成果、挖掘数据规律的重要手段。本文将通过 Python 的matplotlib和seaborn库,结合实际案例,详细介绍时间序列趋势、分组对比、数据分布、相关矩阵及多变量关系等多种场景下的数据可视化方法,并提供完整可复用代码。无论是论文撰写、报告展示,还是数据探索,都能找到实用的解决方案!大家喜欢就关注一下,代码可以直接运行!原创 2025-04-27 01:11:19 · 1172 阅读 · 0 评论
分享