hdu 3807【最大最小定理】

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3870

这道题是一道裸的求割问题也即求最大流,但是使用一般网络流这道

题会超时,这是这道题的难点,但是鉴于这道题的图的特殊性,可以

用最大最小定理来求割,这边是这道题的考察点。

推荐诸君看一下最大最小个定理,推荐链接:

http://www.doc88.com/p-386772667290.html

献上代码:

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<queue>
using namespace std;
const int maxh=700+10;
const int inf=1000000000;
typedef struct Edge
{
    int to,next,w;
};
Edge E[2500000];
int head[500000],dis[500000],visit[500000],cnt,map[maxh][maxh];
void init()
{
    memset(head,-1,sizeof(head));
    cnt=0;
}
void add(int a,int b,int c)
{
    E[cnt].to=b;
    E[cnt].w=c;
    E[cnt].next=head[a];
    head[a]=cnt++;
    E[cnt].to=a;
    E[cnt].w=c;
    E[cnt].next=head[b];
    head[b]=cnt++;
}
void spfa(int s,int t)
{
    for(int i=0;i<=t+10;i++)
    {
        dis[i]=inf;
        visit[i]=0;
    }
    dis[s]=0;
    queue<int>Q;
    visit[s]=1;
    Q.push(s);
    while(!Q.empty())
    {
        int k=Q.front();
        Q.pop();
        visit[k]=0;
        for(int i=head[k];i+1;i=E[i].next)
        {
               int to=E[i].to;
               int w=E[i].w;
               if(dis[k]+w<dis[to])
               {    
                    dis[to]=dis[k]+w;
                    if(visit[to])
                    continue;
                    visit[to]=1;
                    Q.push(to);
                }
          }
     }
}
int main()
{
    int T,n;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        init();
        for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
        scanf("%d",&map[i][j]);
        int s=0,t=n*n+1;
        for(int i=1;i<=n-1;i++)
        {  
            add(s,i,map[1][i]);
            add(s,i*(n-1),map[i][n]);
            add((i-1)*(n-1)+1,t,map[i][1]);
            add((n-2)*(n-1)+i,t,map[n][i]);
        }
        for(int i=1;i<=n-1;i++)
        for(int j=1;j<=n-1;j++)
        {
           if(j+1<=n-1){
                add((i-1)*(n-1)+j,(i-1)*(n-1)+j+1,map[i][j+1]);
            }
           if(i+1<=n-1){
                add((i-1)*(n-1)+j,i*(n-1)+j,map[i+1][j]);
            }
        }
        spfa(s,t);
        printf("%d\n",dis[t]);
    }
    return 0;
}
        
            
                
        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值