拉姆齐Ramsey定理是一个稍微难于理解的定理,该定理又称拉姆齐二染色定理,是要解决这样的问题:
要找这样一个最小的数 R(k,l)=n,使得 n 个人中必定有 k 个人相识或 l 个人互不相识。
比如本题中的R(3,3) = 6,有3个人认识或者3个人互不认识,最小的数是6个人。
6个人中必有3个人相互认识或者相互不认识。
证明并不难,采用二染色方法比较直观的来看看吧。
对于一个有向图G,有6个节点,边只有蓝色或者红色。
假定G是一个完全图,我们选取一个节点1,它有5条边与其他节点相连。如下图:
根据我们之前学过的鸽巢原理,5条边中至少有3条是同一种颜色。