Given an integer matrix, find the length of the longest increasing path.
From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed).
Example 1:
Input: nums =
[
[9,9,4],
[6,6,8],
[2,1,1]
]
Output: 4
Explanation: The longest increasing path is [1, 2, 6, 9].
思路:
直接用DFS遍历所有路径会TLE
所以用dp数组储存之前DFS的结果,矩阵中一个点(x, y)的最长递增路径相当于它上下左右的四个相邻点的路径长+1
走到一个(x, y)点时,首先把当前路径长设为1,然后根据相邻的4个点进行更新,而且,因为是递增path,所以要判断原矩阵中相邻点处的值>当前点处的值时才算递增,<=当前点处的值时路径长直接就是1。还要判断是否超出边界。
dfs计算本身会遍历到所有的dp元素,主函数中遍历matrix是取dp中所有结果的最大值,也就是最长的递增路径长度。
class Solution {
private int rows = 0;
private int cols = 0;
private int[][] dp;
public int longestIncreasingPath(int[][] matrix) {
if(matrix == null || matrix.length == 0) {
return 0;
}
rows = matrix.length;
cols = matrix[0].length;
dp = new int[rows][cols];
//for(int i = 0; i < rows; i++) {
// Arrays.fill(dp[i], -1);
//}
int result = 0;
for(int i = 0; i < rows; i++) {
for(int j = 0; j < cols; j++) {
result = Math.max(result, dfs(matrix, i, j));
}
}
return result;
}
public int dfs(int[][] matrix, int row, int col) {
if(dp[row][col] != 0) {
return dp[row][col];
}
int[] offset = new int[]{-1, 0, 1, 0, -1};
int nrow = 0; //neighbor x
int ncol = 0; //neighbor y
dp[row][col] = 1;
for(int i = 0; i < 4; i++) {
ncol = col + offset[i];
nrow = row + offset[i + 1];
if(ncol < 0 || nrow < 0 || ncol >= cols || nrow >= rows ||
matrix[nrow][ncol] <= matrix[row][col]) {
continue;
}
dp[row][col] = Math.max(dp[row][col], 1 + dfs(matrix, nrow, ncol));
}
return dp[row][col];
}
}