Side Window Filtering(CVPR 2019)阅读与实现

论文 https://arxiv.org/abs/1905.07177

主要针对图像滤波中边缘模糊的问题提出改进
由于很多图像中会遇到滤波窗口问题,因此论文中预计SWF可以得到广泛的应用

论文中认为edge两边极值不同且edge处不可导
g ( x − ϵ , y ) ≠ g ( x + ϵ , y ) g(x - \epsilon, y) \neq g(x + \epsilon, y) g(xϵ,y)̸=g(x+ϵ,y)
g ′ ( x − ϵ , y ) ≠ g ′ ( x + ϵ , y ) g'(x - \epsilon, y) \neq g'(x + \epsilon, y) g(xϵ,y)̸=g(x+ϵ,y)

依据泰勒展开式
在这里插入图片描述

只展开到一阶
g ( x − 2 ϵ , y ) ≈ g ( x − ϵ , y ) + g ′ ( x − ϵ , y ) ( − ϵ ) g(x - 2\epsilon, y) \approx g(x - \epsilon, y) + g'(x - \epsilon, y)(-\epsilon) g(x2ϵ,y)g(xϵ,y)+g(xϵ,y)(ϵ)
and g ( x + 2 ϵ , y ) ≈ g ( x + ϵ , y ) + g ′ ( x + ϵ , y ) ϵ g(x + 2\epsilon, y) \approx g(x + \epsilon, y) + g'(x + \epsilon, y)\epsilon g(x+2ϵ,y)g(x+ϵ,y)+g(x+ϵ,y)ϵ

证明edge location ‘a-’ 处必须由左侧region得到,同理edge右侧

提出了几个side window模型,根据 θ \theta θ ρ \rho ρ的变动
可以有Left, Right, Up, Down, NorthWest, NorthEast, SouthWest, SouthEast几个窗口

一改以往目标pixel处于window中心的思想,把目标pixel(x, y)放在side window的边缘,就减小了滤波过程中对边缘的削弱

在这里插入图片描述

按照以下算法对经典图片lena进行滤波处理,和均值滤波进行比较
(参照https://blog.csdn.net/just_sort/article/details/93664078,代码作了修改)

在这里插入图片描述

lena原图
在这里插入图片描述

均值滤波后
在这里插入图片描述

SWF均值滤波后
在这里插入图片描述

可以看到SWF对边缘的保留效果还是很好的
对代码进行一些修改还可以达到提取边缘的效果
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓝羽飞鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值