gaussian grouping训练自定义数据集

gaussian grouping是一个语义分割3DGS的方法。
它在每个3DGS点云中加入一个叫Identity Encoding的特征向量,
在渲染时把特征向量渲染到2D图像,每个像素位置为一个特征向量,使用额外的线性分类层对每个2D位置的特征向量分类。得到mask。
这个mask和gt mask计算2D损失,同时3D正则化损失利用3D空间一致性,强制执行Identity Encoding在特征距离上接近其最近的3D高斯点。
训练Identity Encoding和线性分类层。

如果训练时有比较完美的mask, 渲染的效果也是很好的。

下面以mip360/kitchen为例训练gaussian grouping. 其他数据集类似。
假设初步只有一些拍摄的图像。放在input文件夹。
用3DGS的convert.py文件处理mip360/kitchen之后,
可得到images和相关下采样图像文件夹,sparse文件夹。

kitchen数据集自带标注好的mask, 如果没有,需要自己标注mask(可以用prepare_pseudo_label.sh),
mask放在kitchen/object_mask文件夹下,格式为png.

train.json设置:

假设mask里面只有2类物体,即前景和背景,前景的像素值取的是255, 背景是0,
那么,在gaussian-grouping/config/gaussian_dataset/train.json中,

"num_classes"要写256.
你会纳闷,为什么只有2类却要写256类?
因为你的前景像素值取的是255,从数字上看,它是第255个类别,想输出类别255,分类器中就要有>=255个类别。如果前景像素值取1,那么"num_classes"可以写2。

类别写小了会报错cuda非法内存访问。
当cuda内存有限时,可以设置较小的"reg3d_max_points"和"reg3d_sample_size"。

train.py

数据集图片过大时可能需要resize,用到images_2, images_4文件夹,
而假设你标注的mask只有一个尺寸。
那么训练的时候就需要把mask调整到和渲染mask一个尺寸。

logits = classifier(objects)
# Object Loss
if len(viewpoint_cam.objects.shape) > 2:
    gt_obj = viewpoint_cam.objects[:,:,0]  #mask是单通道时不需要这步
    gt_obj_reshaped = gt_obj.unsqueeze(0).unsqueeze(0)
    gt_obj_resized = F.interpolate(gt_obj_reshaped,
                                   size=(logits.shape[1], logits.shape[2]),
                                   mode='nearest')
    gt_obj_resized = gt_obj_resized.squeeze(0).squeeze(0)
    gt_obj = gt_obj_resized.cuda().long()
else:
    gt_obj = viewpoint_cam.objects.cuda().long()

训练很简单,

train.py -s data/mip360/kitchen -r 2  -m output/kitchen --config_file config/gaussian_dataset/train.json

渲染时,num_classes要和前面一致:

render.py -m output/kitchen --num_classes 256

会在output/kitchen中得到mask等结果。

<think>好的,我现在需要帮助用户了解如何使用3D Gaussian Splatting方法在mipnerf数据集上进行实现和设置。首先,我需要回顾一下3D Gaussian Splatting的基本原理,确保自己理解正确。这种方法主要用于3D场景重建和新视角合成,通过高斯分布来表示场景中的点,并进行可微渲染优化。接下来,我得考虑如何将它与mipnerf数据集结合起来,可能需要数据预处理步骤,比如将mipnerf的数据格式转换为适合3D Gaussian Splatting的输入。 然后,我应该检查官方实现是否有支持mipnerf的配置或者需要用户自行调整。用户可能需要安装特定的依赖项,比如PyTorch、CUDA等,以及可能的可视化工具。另外,训练参数的设置也很重要,比如学习率、迭代次数,这些可能需要根据数据集的特点进行调整。 还需要考虑数据集的路径配置问题,用户可能需要修改配置文件中的数据集路径,或者编写自定义的数据加载器。此外,训练完成后,如何评估模型性能,比如使用PSNR、SSIM等指标,以及如何渲染新视角的图片,这些步骤都需要详细说明。 用户可能遇到的问题包括环境配置错误、数据格式不匹配、训练过程中的内存不足等,我需要提前想到这些并提供解决方案。比如建议使用更高显存的GPU,或者调整批量大小。最后,生成相关问题时要围绕实现细节、优化方法和应用场景展开,确保覆盖用户可能的后续疑问。</think>### 使用3D Gaussian Splatting运行mipnerf数据集的实现指南 #### 1. 环境配置 - **基础依赖**: 需要安装PyTorch、CUDA、Python 3.8+等工具,推荐使用Anaconda创建虚拟环境: ```bash conda create -n gsplat python=3.8 conda activate gsplat pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116 ``` - **扩展库**: 安装3D Gaussian Splatting官方实现库[^1]: ```bash git clone https://github.com/graphdeco-inria/gaussian-splatting cd gaussian-splatting pip install -r requirements.txt ``` #### 2. 数据集准备 - **mipnerf数据格式转换**: - mipnerf数据集通常采用`nerfstudio`格式,需转换为COLMAP格式 - 使用官方提供的转换脚本: ```python python convert_mipnerf_to_colmap.py --input_dir /path/to/mipnerf --output_dir /data/colmap ``` - 验证生成的文件结构: ``` data/colmap/ ├── images/ # 所有训练图像 ├── sparse/0/ # COLMAP稀疏点云 └── cameras.json # 相机参数 ``` #### 3. 训练配置 - **参数设置**(以`train.json`为例): ```json { "data_path": "/data/colmap", "iterations": 30000, "position_lr": 0.00016, "feature_lr": 0.0025, "opacity_lr": 0.05, "scaling_lr": 0.005, "rotation_lr": 0.001, "lambda_dssim": 0.2 } ``` - **启动训练**: ```bash python train.py -s /data/colmap -m /output_model --config train.json ``` #### 4. 可视化与评估 - **实时预览**: ```bash python viewer.py --model /output_model ``` - **定量评估**: ```python python evaluate.py --model /output_model --dataset /test_data ``` 输出指标包括PSNR、SSIM、LPIPS等[^2] #### 5. 常见问题解决 - **显存不足**: 调整`batch_size`参数或使用`--resolution 2`降低输入分辨率 - **点云初始化失败**: 检查COLMAP重建质量,确保有足够特征点匹配 - **渲染伪影**: 尝试增加高斯密度约束权重`--lambda_density 0.01`
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓝羽飞鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值