详解HMM模型原理 及 实现(之四:matlab实现曲线分类)

本文详解paper “A Tutorial on HMMs and Selected Applications in Speech Recognition"并进行matlab实现(尽量用其他编程语言通用的实现)
**为方便阅读代码,注释部分用python的”#"

实现HMM模型用于简单的曲线分类
先定义HMM变量
曲线在T个时刻取值
observation定义为曲线可以取的值,这里先把曲线做归一化,然后从0到1之间以0.1为间隔切为10个区间,依次标号1到10,那么observation就有10个,为1到10的值
train_data定义为训练的曲线集,集中到一个矩阵,每行为一个observation序列,行数为train_data的数量
N为state数,这里设为5

   maxIter = 100;  #迭代次数
   N = 5; #number of states
   M = 10; #number of observations
   T = size(train_data, 2);  #training data列数应一致

初始化HMM参数,可以用均匀分布,也可以用随机数
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
这里pai和A用均匀分布,B用随机分布

   pai = 1/N * ones(N,1);
   A = 1/N * ones(N,N);  #state transition matrix
   B = rand(N,M); #row: states, col: observations

初始化计算过程中的变量alpha, beta, gamma, xi
xi的size本来应该是state * state * T
但注意在计算aij时只用到了xi的1到T-1时刻求和,因此减掉一个维度T,直接定义为1到T-1时刻求和的xi, 变量定义为xi_sumT_1
在这里插入图片描述

   alpha = zeros([N, T]); #row: states, col: time, for calculating problem 1
   beta = zeros([N, T]); #row: states, col: time, for calculating problem 1
   gamma = zeros([N, T]); #row: states, col: time, for calculating problem 2
   #xi = zeros([N*N, T-1]); #row: state*state, col:time-1, for calculating problem 3 
   xi_sumT_1 = zeros(N, N); #直接对t时刻求和 row:states, col:states, for calculating problem 3
   trainNum = size(train_data, 1);

另外一些辅助变量

   iter = 1;  #迭代次数计数器
   converged = 0; #0:未收敛 1:收敛
   previous_loglik = -inf; #记录前一次likelihood
   converge_thres = 1e-4; #判断收敛的阈值

HMM设计的3个基本问题:

  1. 给定一个HMM模型,一个观测信号序列,估计出序列的概率
    给出observation序列, 模型lambda=(A,B,pi), 计算P(O | lambda)
    即模型与Observation有多匹配
  2. 决定最好的模型states
    给出observation序列,模型lambda=(A,B,pi), 选择state序列Q=q1q2…qT
    即探索隐性状态
  3. 调整模型参数来最好地解释观测到的信号
    调整lamba=(A,B,pi)使P(O | lambda)最大
    即用observation进行训练

这里要训练的HMM模型是用来识别曲线的,每个曲线类型都要训练一个模型(problem3),而后输入测试曲线,计算在每个模型下的概率(problem1),概率最大的为匹配类型,达到分类效果
每个类型的模型训练都是相同的方法,因此具体写一个类型的train_data

problem3中需要用到的变量为xi
在这里插入图片描述
而计算xi需要用到状态转移矩阵A,state下observation概率矩阵b, problem1中的alpha和beta
state下observation概率矩阵b的计算:
根据state下observation概率矩阵B
给定一个训练曲线,这个曲线在1到T时刻有值,取值范围在observation内
那么根据每个时刻t处的observation, 和指定的state,可以在B矩阵中查找到概率,可以知道b的size为state * T, 例如state为j, 时刻t时的值为bj(Ot)

for t=1:T
  b(:,t) = B(:, train_data(t));
end

计算alpha:
在这里插入图片描述

alpha(:, 1) = pai(:).*b(:,1);
#for j = 1:N  #loop j:state
   for t = 1:T-1  
      #alpha(j, t+1) = (A(:,j)'*alpha(:,t)).*B(j,tCurve(t));  #论文中公式 
      #A的每一行是Sj->S1~SN的概率,转置后每行是S1~SN->Sj的概率
      alpha(:, t+1) = A' * alpha(:,t).* b(:,t+1); #简化版         
    end
#end
loglik = log(sum(alpha(:,T))); #公式中没有log

beta:
在这里插入图片描述
在这里插入图片描述

beta = zeros(N, T);
beta(:,T) = ones(N,1); #时刻T的beta初始化为1
for t = T-1:-1:1
     #注释部分为论文中公式
     #for i = 1:N
         #tmp_sum = 0;
         #for j = 1:N
             #tmp_sum = A(i,j) * (b(j, t+1) .* beta(j, t+1));
         #end
         #beta(i, t) = tmp_sum;
         beta(:, t) = A * (b(:, t+1).*beta(:,t+1));
         beta(:,t) = normalise(beta(:,t)); #归一化
      #end
end

计算xi
xi的size本来应该是state * state * T
但注意在计算aij时只用到了xi的1到T-1时刻求和,因此减掉一个维度T,直接定义为1到T-1时刻求和的xi, 变量定义为xi_sumT_1
在这里插入图片描述
在这里插入图片描述

   xi_sumT_1 = zeros(N, N);
   
   for t = 1:T-1   
      pro = 0;
      tmp = zeros(N, N);
      for i = 1:N
         for j = 1:N
           tmp(i, j) = alpha(i, t) * A(i,j) * b(j,t+1) * beta(j, t+1);
           pro = pro + tmp(i, j);
         end
      end
      xi_sumT_1 = xi_sumT_1 + tmp./pro;
   end

简化为矩阵计算

for t = 1:T-1
   tmp = beta(:,t+1) .* b(:,t+1);
   xi_sumT_1 = xi_sumT_1 + normalise((A .* (alpha(:,t) * tmp')));
end

计算gamma
在这里插入图片描述

在这里插入图片描述

for t = 1:T
   #归一化满足概率条件
   gamma(:,t) = normalise(alpha(:,t) .* beta(:,t));
end

都计算完以后,可以为更新参数做准备,为什么说是做准备,因为如下公式中都是期望值,就是要遍历完一次所有的train_data后求出期望值,然后更新参数供下一次迭代使用
在这里插入图片描述
先求期望值,每做完一个train_data(i)求一次

exp_num_pai = exp_num_pai + gamma(:,1); #更新pai(初始状态概率)

gamma_sumT_1 = sum(gamma(:,1:T-1), 2); #按行求和,即1:T-1的gamma求和
exp_num_A = exp_num_A + xi_sumT_1 ./repmat(gamma_sumT_1, [1,5]);

gamma_sumT = sum(gamma, 2); #按行求和,即1:T的gamma求和
#更新B矩阵(state对应的observation的概率矩阵)
for obs=1:M   #每个observation
    ndx = find(train_data(i)==obs);
    if ~isempty(ndx)               
       exp_num_B(:,obs) = exp_num_B(:,obs) + sum(gamma(:, ndx), 2)./gamma_sumT; 
    end
end

当遍历完一次所有的train_data后,更新HMM参数,为满足概率和为1的条件,要归一化

pai = normalise(exp_num_pai);
A = mk_stochastic(exp_num_A); #每行归一化
B = mk_stochastic(exp_num_B);  #每行归一化

这样细节部分完成了,再完成整体训练流程如下

   #Training process..
   while(iter <= maxIter && ~converged)
       disp(['iteration ', num2str(iter)]);
       
       exp_num_A = zeros(N,N); #用于求A的期望值 M step
       exp_num_pai = zeros(N,1); #求gamma(1)的期望值 M step
       exp_num_B = zeros(N,M);  #用于求bj(k)矩阵的M step
       loglik = 0;
       for i = 1 : trainNum
           
           #read one curve from train_data..           
           tCurve = train_data(i, :);
                      
           #calculate bj(k) from B
           b = calObsLik(tCurve, B);
           
           #calculate alpha..
           [alpha, currLik] = calAlpha(alpha, pai, A, b, tCurve);
           
           #calculate beta..
           beta = calBeta(beta, A, b, T, N, tCurve);
           
           #calculate xi..
           xi_sumT_1 = calXi(xi_sumT_1, alpha, beta, A, b, N, T);
           
           #calculate gamma..
           gamma = calGamma(gamma, alpha, beta, N, T);
          
           gamma_sumT_1 = sum(gamma(:,1:T-1), 2); #按行求和,即1:T-1的gamma求和
           gamma_sumT = sum(gamma, 2); #按行求和,即1:T的gamma求和
           
           loglik = loglik +  currLik;
           exp_num_pai = exp_num_pai + gamma(:,1); #更新pai(初始状态概率)
           exp_num_A = exp_num_A + xi_sumT_1 ./repmat(gamma_sumT_1, [1,5]); 
           
           #更新B矩阵(state对应的observation的概率矩阵)
           for o=1:M
               ndx = find(tCurve==o);
               if ~isempty(ndx)
                   exp_num_B(:,o) = exp_num_B(:,o) + sum(gamma(:, ndx), 2)./gamma_sumT; %按论文公式
               end
           end
           
       end
       #归一化参数,使满足概率和为1的条件..
       pai = normalise(exp_num_pai);
       A = mk_stochastic(exp_num_A); #每行归一化
       B = mk_stochastic(exp_num_B);  #每行归一化
       disp(['log likelihood: ', num2str(loglik)]);
       
       #判断是否收敛,收敛则停止迭代
       delta_loglik = abs(loglik - previous_loglik);
       avg_loglik = (abs(loglik) + abs(previous_loglik))/2;
       
       if (delta_loglik / avg_loglik) < converge_thres
           converged = 1; 
       end
       
       previous_loglik = loglik;
       iter = iter + 1; #迭代次数+1
   end

最后把每个类别训练好的参数保存,测试时只需要load参数,然后计算

loglik = log(sum(alpha(:,T))); #公式中没有log

看哪个类别的likelihood最大,就分到哪类

  • 7
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓝羽飞鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值