【半精度】Pytorch模型加速和减少显存

如标题所示,这是PyTorch框架提供的一个方便好用的trick:开启半精度。直接可以加快运行速度、减少GPU占用,并且只有不明显的accuracy损失

之前做硬件加速的时候,尝试过多种精度的权重和偏置。在FPGA里用8位精度和16位精度去处理MNIST手写数字识别,完全可以达到差不多的准确率,并且可以节省一半的资源消耗。这一思想用到GPU里也是完全可以行通的。即将pytorch默认的32位浮点型都改成16位浮点型。

只需:

model.half()

 注意1:这一步要放在模型载入GPU之前,即放到model.cuda()之前。大概步骤就是:

model.half()
model.cuda()
model.eval()

注意2:模型改为半精度以后,输入也需要改成半精度。步骤大概是:

model.half()
model.cuda()
model.eval()

img = torch.from_numpy(image).float()
img = img.cuda()
img = img.half()

res = model(img)

本地做的测试结果为:速度提升25%~35%,显存节约40~60%,而accuracy几乎没变。仅供大家参考。

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

木盏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值