keras中的K.concatenate()详解

63 篇文章 3 订阅
8 篇文章 1 订阅

keras中concatenate源代码如下:

def concatenate(tensors, axis=-1):
    """Concatenates a list of tensors alongside the specified axis.

    # Arguments
        tensors: list of tensors to concatenate.
        axis: concatenation axis.

    # Returns
        A tensor.
    """
    if axis < 0:
        rank = ndim(tensors[0])
        if rank:
            axis %= rank
        else:
            axis = 0

    if py_all([is_sparse(x) for x in tensors]):
        return tf.sparse_concat(axis, tensors)
    else:
        return tf.concat([to_dense(x) for x in tensors], axis)

可以看出keras的concatenate()函数是披了外壳的tf.concat()。不过用法没有tf.concat()那么复杂。对tf.concat()解释可以看我的另一篇博文《tf.concat()详解》,如果只想了解concatenate的用法,可以不用移步。

axis=n表示从第n个维度进行拼接,对于一个三维矩阵,axis的取值可以为[-3, -2, -1, 0, 1, 2]。虽然keras用模除允许axis的取值可以在这个范围之外,但不建议那么用。

可以通过如下小段代码来理解:

import numpy as np
import cv2
import keras.backend as K
import tensorflow as tf

t1 = K.variable(np.array([[[1, 2], [2, 3]], [[4, 4], [5, 3]]]))
t2 = K.variable(np.array([[[7, 4], [8, 4]], [[2, 10], [15, 11]]]))
d0 = K.concatenate([t1 , t2] , axis=-2)
d1 = K.concatenate([t1 , t2] , axis=1)
d2 = K.concatenate([t1 , t2] , axis=-1)
d3 = K.concatenate([t1 , t2] , axis=2)

init = tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)
    print(sess.run(d0))
    print(sess.run(d1))
    print(sess.run(d2))
    print(sess.run(d3))
    

axis=-2,意思是从倒数第2个维度进行拼接,对于三维矩阵而言,这就等同于axis=1。

axis=-1,意思是从倒数第1个维度进行拼接,对于三维矩阵而言,这就等同于axis=2。

输出如下:

d0:
[[[  1.   2.]
  [  2.   3.]
  [  7.   4.]
  [  8.   4.]]

 [[  4.   4.]
  [  5.   3.]
  [  2.  10.]
  [ 15.  11.]]]

d1:
[[[  1.   2.]
  [  2.   3.]
  [  7.   4.]
  [  8.   4.]]

 [[  4.   4.]
  [  5.   3.]
  [  2.  10.]
  [ 15.  11.]]]

d2:
[[[  1.   2.   7.   4.]
  [  2.   3.   8.   4.]]

 [[  4.   4.   2.  10.]
  [  5.   3.  15.  11.]]]

d3:
[[[  1.   2.   7.   4.]
  [  2.   3.   8.   4.]]

 [[  4.   4.   2.  10.]
  [  5.   3.  15.  11.]]]

 

`tf.keras.layers.concatenate`和`tf.concat`都是用于在TensorFlow进行张量连接的函数,但是它们在使用方式和功能上有一些区别。 `tf.keras.layers.concatenate`是一个高级API,它是Keras的一种层操作。它接受一个张量列表作为输入,并返回一个连接后的张量。例如,可以将两个具有相同维度的张量连接在一起。 示例代码: ```python import tensorflow as tf # 创建输入张量 input1 = tf.keras.Input(shape=(10,)) input2 = tf.keras.Input(shape=(20,)) # 使用tf.keras.layers.concatenate连接张量 concatenated = tf.keras.layers.concatenate([input1, input2], axis=-1) # 创建模型 model = tf.keras.Model(inputs=[input1, input2], outputs=concatenated) ``` `tf.concat`是TensorFlow的低级API函数,用于在给定轴上连接多个张量。它接受一个张量列表作为输入,并返回一个连接后的张量。与`tf.keras.layers.concatenate`不同的是,`tf.concat`可以在任意轴上进行连接。 示例代码: ```python import tensorflow as tf # 创建输入张量 input1 = tf.constant([[1, 2], [3, 4]]) input2 = tf.constant([[5, 6], [7, 8]]) # 使用tf.concat连接张量 concatenated = tf.concat([input1, input2], axis=1) # 打印结果 print(concatenated) ``` 输出结果: ``` tf.Tensor( [[1 2 5 6] [3 4 7 8]], shape=(2, 4), dtype=int32) ``` 总结来说,`tf.keras.layers.concatenate`是一个更高级的操作,特别适用于在Keras模型进行张量连接,而`tf.concat`是TensorFlow的低级API函数,更加灵活,可以在任意轴上进行连接。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

木盏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值