从头开始运行一个yolo11的分类模型

从头开始运行一个yolo11的分类模型

1.yolo11网址 https://docs.ultralytics.com/zh/models/yolo11/

image-20250330094806269

2.找到模型并下载

image-20250330094912828

3.下载ultralytics https://github.com/ultralytics/ultralytics

image-20250330094957659

4.解压倒入文件夹

image-20250330095018154

5.创建trian.py

from ultralytics import YOLO

import yaml
with open("/Users/lfzxmw/Downloads/ultralytics-main3/shuju.yaml", "r") as f:
    data = yaml.safe_load(f)
print(data)

if __name__ == '__main__':
    model = YOLO('/Users/lfzxmw/Downloads/ultralytics-main3/yolo11n-cls.pt')
    model.train(
        data='/Users/lfzxmw/Downloads/ultralytics-main3/shuju.yaml',
        imgsz=224,
        epochs=100,
        batch=16,
        device='mps',
        workers=10
    )

6.将下载好的yolo11n.pt拖入文件夹

7.创建shoji.yaml文件 确保训练集和验证集路径的正确

train: /Users/lfzxmw/Downloads/ultralytics-main3/classs/train
val: /Users/lfzxmw/Downloads/ultralytics-main3/classs/val
#test: /Users/lfzxmw/Downloads/class/test

nc: 5
names: ['1','2','3','4','5']

8.点击train.py就可以开始训练了

### 如何使用 YOLO 框架训练自定义模型 #### 准备工作 在开始之前,需要确保安装了 `Ultralytics` 库以及配置好环境。可以通过以下命令安装库: ```bash pip install ultralytics ``` #### 修改并运行训练脚本 以下是基于提供的代码片段说明构建的完整训练流程: 1. **加载模型** 需要通过 `YOLO` 类实例化一个模型对象。可以选择从头开始创建一个新的模型或者加载预训练权重。 ```python from ultralytics import YOLO if __name__ == '__main__': model = YOLO("yolo11n.pt") # 加载YOLOv11 Nano预训练模型 [^1] ``` 2. **指定数据集路径** 数据集的信息通常存储在一个 `.yaml` 文件中,其中包含了类别名称、图像路径其他元信息。 ```python data_path = r"F:/path/to/dataset/data.yaml" # 替换为实际的数据集路径 ``` 3. **设置超参数** 超参数决定了模型的行为性能表现。常见的超参数包括训练轮数 (`epochs`)、输入图片尺寸 (`imgsz`) 批量大小 (`batch`)。 ```python train_results = model.train( data=data_path, # 数据集YAML文件路径 [^1] epochs=100, # 训练总轮次 [^3] imgsz=640, # 输入图片尺寸 (高度宽度均为640像素) device=0 # 使用GPU设备编号(如果可用),也可以设为'cpu' ) ``` 4. **保存模型** 完成训练后,可以将最终模型导出到本地磁盘以便后续部署或测试。 #### 自定义数据集准备 为了成功训练自定义模型,还需要准备好标注好的数据集,并按照特定格式组织目录结构。具体步骤如下: - 创建包含训练集验证集子文件夹的根目录; - 将每张图片对应的标签文件放在同一级目录下,采用`.txt`扩展名命名方式匹配原图名字前缀; - 编写描述这些资源位置关系及其类别的`data.yaml`文档样本可能看起来像这样: ```yaml path: ../datasets/my_dataset/ train: images/train val: images/val nc: 2 # 数字代表分类总数 names: ['classA', 'classB'] # 列表项依次对应各类别字符串表示形式 ``` #### 注意事项 当遇到显存不足的情况时,可适当减少批次规模(`batch`)来缓解压力;另外,在某些特殊场景下还可以调整学习率等更多高级选项进一步优化效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值