Dijkstra算法
1.定义概览
Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点(节点需为源点)到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,注意该算法要求图中不存在负权边。
实例:假设有A,B,C,D四个城市,(这里讨论的是有向网) 它们的距离为: A->B(10),A->C(11),B->D(12),C->D(13);
所谓単源路径就是解决从源点 A开始找出到其他城市的最短距离(除本身外的其他所有城市)。Dijkstra算法可以求出A->B(10),A->C(11),A->D(22);
拓展2:多源最短路径(常用Floyd算法)是解决任意两点间的最短路径的一种算法,(不局限于从源点出发,到其他各个顶点 )可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。Floyd算法的时间复杂度为O(N3),空间复杂度为O(N2)。
图的创建:
void createGraph(tnode t){
cout<<"输入顶点和边数:"<<endl;
cin>>t->v>>t->e;
cout<<"输入顶点信息:"<<endl;
for(int i = 1;i<=t->v;i++){
cin>>t->vex[i];
}
for(int i = 1;i<=t->v;i++){
for(int j = 1;j<=t->v;j++){
t->wei[i][j] = LIMITLESS;
}
}
cout<<"输入两连接点下标和权值:"<<endl;
int k1,k2,weight;
for(int i = 1;i<=t->e;i++){
cin>>k1>>k2>>weight;
t->wei[k1][k2] = weight;
}
}
void printGraph(tnode t){
for(int i = 1;i<=t->v;i++){
for(int

本文介绍了Dijkstra算法的基本原理和应用,该算法主要用于寻找图中单源点到其他所有节点的最短路径。内容涵盖了算法的特点、一个简单的实例以及与多源最短路径算法Floyd的对比。Dijkstra算法不适用于存在负权边的图,而Floyd算法则能处理有向图及负权路径问题,且具有特定的时间和空间复杂度。
最低0.47元/天 解锁文章
3518

被折叠的 条评论
为什么被折叠?



