2021-数字中国创新大赛大数据赛道-城市管理大数据-task01

本文参与了2021年数字中国创新大赛的大数据赛道,任务是识别工作日早高峰的潮汐现象最突出的40个共享单车区域。作者通过官方baseline代码,进行了数据分析和模型构建,学习了特征工程和python库的使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

任务介绍

根据官方提供的数据进行数据分析和计算模型构建等工作,识别出工作日早高峰07:00-09:00潮汐现象最突出的40个区域,列出各区域所包含的共享单车停车点位编号名称,并提供计算方法说明及计算模型。

我自己理解为这是一个分类问题,但是潮汐现象最突出具体衡量指标没理解到。

实现过程

这里是使用官方提供的baseline代码:自己主要在本地IDE上跑通一遍。官方代码传送门 代码在这里

数据集

数据集

结果展示

result

小结&产出

  • 小结
    此次主要是完成对实验平台的熟悉,以及加深对赛题的理解。
  • 产出
    对baseline代码在本地跑通,学习了对数据进行特征工程。另外学习了python之前未使用过的一些库函数使用。另外也熟悉了平台的sftp提交资源。
### 计算机创新大赛大数据赛道的比赛信息 #### 比赛规则 对于计算机创新大赛中的大数据赛道,比赛形式和要求会因具体赛事而异。例如,在世界职业院校技能大赛中,2024年的比赛设置了42个不同的赛道,其中涉及大数据技术的应用。参赛团队需针对选定的赛项提交详细的项目介绍至官方平台,内容应涵盖项目的整体构思、关键技术、预期成果以及创新之处[^2]。 #### 所需技能 参加此类竞赛通常需要掌握一系列特定的技术能力。以快手大数据挑战赛为例,该类比赛聚焦于利用经过匿名化处理的数据集来预测未来的用户行为模式。这不仅考验了选手们对机器学习模型构建的能力,还涉及到数据预处理技巧如特征工程等方面的知识。此外,熟悉Python编程语言及其常用库(如Pandas用于数据分析)、Scikit-Learn或TensorFlow等深度学习框架也是必不可少的一部分[^3]。 #### 参赛作品示例 在实际比赛中,一份优秀的参赛方案应当能够清晰展示从问题定义到解决方案实施的过程。以下是基于上述提到的大数据应用案例所整理的一份简化版参赛作品结构: 1. **背景描述** - 解释为什么选择这个主题进行研究; - 阐述当前领域内存在的痛及解决这些问题的重要性; 2. **方法论阐述** - 描述采用的具体算法和技术手段; - 提供必要的理论支持材料说明为何这些工具适合解决问题; 3. **实验设计与实现细节** - 明确指出使用的数据源及其特- 展现完整的代码逻辑并附带适当注释以便他人理解; ```python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout # 加载数据集 data = pd.read_csv('sample_data.csv') # 数据清洗... X_train, X_test, y_train, y_test = train_test_split(X, y) scaler = StandardScaler().fit(X_train) scaled_X_train = scaler.transform(X_train) scaled_X_test = scaler.transform(X_test) model = Sequential([ Dense(64, activation='relu', input_shape=(input_dim,)), Dropout(rate=0.5), Dense(output_dim, activation='softmax') ]) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) history = model.fit(scaled_X_train, epochs=num_epochs, batch_size=batch_size, validation_data=(scaled_X_val)) ``` 4. **结果分析** - 对比不同参数配置下的性能差异; - 总结最终得到的最佳实践建议; 5. **结论与展望** - 归纳整个过程中学到的经验教训; - 探讨未来可能的研究方向和发展趋势;
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值