数学问题初步

1.最大公约数

public static gcd(int a, int b){
    return b==0?a:gcd(b,a%b);
}

延申1:最小公倍数

public static int lcm(int a, int b){
    return a/gcd(a,b)*b;
}

2.分数

3.素数

问题1:判断一个数是否是素数

public static boolean isPrime(int n){//true表示是素数
    if(n <= 1) return false;
    int sqrtn = (int)Math.sqrt(1.0*n);
    for(int i = 2; i <= sqrtn; i++){
        if(n%i == 0) return false;
    }
    return true;
}

问题2:生成1~n的素数表

public static int[] find_prime(){
    int maxn = 100001;
    int[] prime = new int[maxn];//存储第i-1个素数
    boolean[] p = new boolean[maxn];//false表示是素数
    int pNum = 0;
    for(int i = 2; i < maxn; i++){
        if(p[i] == false){
            prime[pNum++] = i;
            for(int j = i + i; j < maxn; j += i){
                p[j] = true;
            }
        }
    }
    return prime;
}

4.质因子解

核心思路:

①当给定n为1时,需要特判。
②遍历质数表prime(i < pNum && prime[i] < Math.sqrt(n)),如果是质因子,则计数。如果不是,则判断下一个质数,直到n==1。

③如果n仍然大于1,则说明n有且只有一个大于sqrt(n)的质因子(可能为n),单独添加。

public static int[][] prime_resolve(int n){
    int[][] factor = new int[10][2];//存储质因子
    int fCount = 0;//记录质因子种类的个数
    if(n == 1){//此处为特判
        factor[0][0] = 1;
        factor[0][1] = 1;
        return factor;
    }
    //遍历质数列表
    for(int i = 0; i < pNum && prime[i] <= Math.sqrt(n); i++){//注意这里的结尾条件
        if(n % prime[i] == 0){
            int count = 0;//记录单个质因子的次数
            while(n % prime[i] == 0){
                n /= prime[i];
                count++;
            }
            factor[fCount][0] = prime[i];
            factor[fCount][1] = count;
            fCount++;
        }
        if(n == 1) break;//终止条件,易忽略
    }
    if(n != 1){//单独添加大于Sqrt(n)的质因子
        factor[fCount][0] = n;
        factor[fCount][1] = 1;
        fCount++;
    }

    return factor;
}

5.大整数

class Bign implements Comparable<Bign>{
	int[] d = new int[1000];
	int len = 0;

	public Bign(){
	    
	}

	public Bign(String str){
		this.len = str.length();
	    for(int i = 0; i < len; i++){
	        d[i] = str.charAt(len - 1 - i) - '0';
	    }
	}
	
    //加
	public Bign add(Bign b2){
	    Bign nb = new Bign();
		int carry = 0;
		for(int i = 0; i < len || i < b2.len; i++){
		    int temp = d[i] + b2.d[i] + carry;
			nb.d[nb.len++] = temp % 10;
			carry = temp / 10;
		}
		if(carry != 0){
		    nb.d[nb.len++] = carry;
		}
		return nb;
	}

    //减
	public Bign sub(Bign b2){
	    Bign nb = new Bign();
		for(int i = 0; i < len || i < b2.len; i++){
			if(d[i] < b2.d[i]){
			    d[i+1]--;
				d[i] += 10;
			}
			nb.d[nb.len++] = d[i] - b2.d[i];
		}
		while(nb.len - 1 >= 1 && nb.d[nb.len - 1] == 0){
		    nb.len--;
		}
		return nb;
	}

    //乘
	public Bign multi(int n){
	    Bign nb = new Bign();
		int carry = 0;
		for(int i = 0; i < len; i++){
			int temp = d[i]*n + carry;
			nb.d[nb.len++] = temp % 10;
			carry = temp / 10;
		}
		while(carry != 0){
		    nb.d[nb.len++] = carry % 10;
			carry = carry / 10;
		}
		return nb;
	}

    //除
	public Bign devide(int n){
	    Bign nb = new Bign();
		nb.len = len;
		int r = 0;
		for(int i = len - 1; i >= 0; i--){
			r = r * 10 + d[i];
			nb.d[i] = r / n;
			r = r % n;
		}
		while(nb.len - 1 >= 1 && nb.d[nb.len - 1] == 0){
		    nb.len--;
		}
		return nb;
	}

	@Override
	public String toString(){
		StringBuilder sb = new StringBuilder();
		for(int i = len - 1; i >= 0; i--){
		    sb.append(d[i]);
		}
	    return sb.toString();
	}

	@Override
	public int compareTo(Bign b2){
	    if(len > b2.len){
	        return 1;
	    }else if(len < b2.len){
	        return -1;
	    }else{
	        for(int i = len - 1; i >= 0; i--){
	            if(d[i] == b2.d[i]){
	                continue;
	            }else{
	                return d[i] - b2.d[i];
	            }
	        }
			return 0;
	    }
	}
}

6.扩展欧几里得算法

问题1:求解ax+by=gcd(a,b)

//p[0]*a + p[1]*b = gcd(a,b)
public static int exGcd(int a, int b, int[] p){
    if(b == 0){
        p[0] = 1;//表示x
        p[1] = 0;//表示y
        return a;
    }
    int g = exGcd(b, a%b, p);
    int temp = p[0];
    p[0] = p[1];
    p[1] = temp - (a/b)*p[1];
    return g;
}

注意1:x和y的通解为: x = x 0 + b gcd ⁡ ∗ K y = y 0 − a gcd ⁡ ∗ K \begin{array}{l} x = {x_0} + \frac{b}{{\gcd }}*K\\ y = {y_0} - \frac{a}{{\gcd }}*K \end{array} x=x0+gcdbKy=y0gcdaK
注意2:x的最小整数解为: ( x % b gcd ⁡ + b gcd ⁡ ) % b gcd ⁡ \left( {x\% \frac{b}{{\gcd }} + \frac{b}{{\gcd }}} \right)\% \frac{b}{{\gcd }} (x%gcdb+gcdb)%gcdb

问题2:ax+by=c的求解

有解的充要条件:c%gcd(a,b)==0

通解的形式为: x ′ = c x 0 gcd ⁡ + b gcd ⁡ ∗ K y ′ = c y 0 gcd ⁡ − a gcd ⁡ ∗ K \begin{array}{l} x' = \frac{{c{x_0}}}{{\gcd }} + \frac{b}{{\gcd }}{\rm{*}}K\\ y' = \frac{{c{y_0}}}{{\gcd }} - \frac{a}{{\gcd }}*K \end{array} x=gcdcx0+gcdbKy=gcdcy0gcdaK。也就是,只有初始值不一样,其他都一样。

问题3:ax==c(mod m),即ax与c模m相同

求解过程: ( a x % m ) = c % m = > ( a x − c ) % m = = 0 = > a x − c = = y m = > a x + y m = c \begin{array}{l} (ax\% m) = c\% m\\ = > (ax - c)\% m = = 0\\ = > ax - c = = ym\\ = > ax + ym = c \end{array} (ax%m)=c%m=>(axc)%m==0=>axc==ym=>ax+ym=c

结论:

①当c%gcd(a,m) != 0,则同余式ax==c(mod m)无解

②当c%gcd(a,m) == 0,则同余式ax==c(mod m)恰好有gcd(a,m)个意义不同的解。解的形式为 x ′ = x 0 + m gcd ⁡ ( a , m ) ∗ K x' = {x_0} + \frac{m}{{\gcd (a,m)}}*K x=x0+gcd(a,m)mK,K=0、1…gcd(a,m)-1

问题4:逆元的求解与(b/a)%m的计算

什么是逆元?如果有 a x ≡ 1 (   m o d   m ) ax \equiv 1(\bmod m) ax1(modm),则称a与x互为模m的逆元。

有什么意义?

​ 在乘法中有 ( b ∗ a ) % m = ( ( b % m ) ∗ ( a % m ) ) % m (b*a)\% m = ((b\% m)*(a\% m))\% m (ba)%m=((b%m)(a%m))%m。但是在除法中, ( b / a ) % m = ( ( b % m ) / ( a % m ) ) % m (b/a)\% m = ((b\% m)/(a\% m))\% m (b/a)%m=((b%m)/(a%m))%m却不成立,逆元就是为了解决除法的这个问题。若x为a的逆元,则有 ( b / a ) % m = ( b ∗ x ) % m (b/{\rm{a}})\% m = (b*x)\% m (b/a)%m=(bx)%m,轻松解决。

那么,应该如何求解逆元呢?

同余式 a x ≡ 1 (   m o d   m ) ax \equiv 1(\bmod m) ax1(modm)是否有解等价于1%gcd(a,m)是否为0,

结论:

①如果 g c d ( a , m ) ≠ 1 gcd\left( {a,m} \right) \ne 1 gcd(a,m)=1,则同余式 a x ≡ 1 (   m o d   m ) ax \equiv 1(\bmod m) ax1(modm)无解,a不存在模m的逆元

②如果 g c d ( a , m ) = 1 gcd\left( {a,m} \right) = 1 gcd(a,m)=1,则同余式 a x ≡ 1 (   m o d   m ) ax \equiv 1(\bmod m) ax1(modm)在(0,m)有唯一解。

//求解a模m的逆元,条件是gcd(a,m)==1
public static int inverse(int a, int m){
    int[] p = new int[2];
    int g = exGcd(a, m, p);
    return (p[0]%m + m)%m;
}

另一种求解方法(费马小定理):条件a不是m的倍数、a不是0,m是素数,则有 a m − 1 ≡ 1 (   m o d   m ) {a^{m - 1}} \equiv 1(\bmod m) am11(modm)

此时a的逆元为 a m − 2 {a^{m - 2}} am2

注意:以上两种方法只针对 g c d ( a , m ) = 1 gcd\left( {a,m} \right) = 1 gcd(a,m)=1这种情况

当b是a的整数倍的时候,可以用 ( b / a ) % m = ( b % ( a m ) ) / a (b/a)\% m = (b\% (am))/a (b/a)%m=(b%(am))/a

7.组合数

  1. 计算n!中有多少个质因子p。
//循环写法
static int cal(int n, int p){
    int ans = 0;
    while(n != 0){
        ans += n / p;
        n /= p;
    }
    return ans;
}

//递归写法
static int cal(int n, int p){
    if(n < p) return 0;
    return n/p + cal(n/p, p);
}

例题:n!中末尾有多少个0。提示:10=2*5。

cal(n,5);
  1. 计算C(int n, int m),从n个数中选m个数的方案,组合。

递推原理:C(n,m)=C(n-1,m)+C(n-1,m-1)

static int[][] res = new int[100][100];//成员变量
//方式一:求C(n,m)
static int C(int n, int m){
    if(m == 0 || m == n) return 1;
    if(res[n][m] != 0) return res[n][m];
    return res[n][m] = C(n-1,m) + C(n-1,m-1);
}

//方式二:打印res表
static void calC(){
    for(int i = 0; i <= n; i++){
        res[i][0] = res[i][i] = 1;//初始化边界
    }

    for(int i = 2; i <= n; i++){//注意i从2开始
        for(int j = 1; j <= i/2; j++){//注意j(1,i/2)
            res[i][j] = res[i][i-j] = res[i-1][j] + res[i-1][j-1];
        }
    }
}

//方式三:利用定义化简
public static int C(int n, int m){
    int res = 1;
    for(int i = 1; i <= m; i++){
        res = res * (n - m + i) / i;//注意先乘后除
    }
    return res;
}
  1. 计算C(n,m)%p

方法一:基于上一步的方法一化简

//方法一:基于上一步的方法一化简
private static int res[][] = new int[1001][1001];

public static int C(int n, int m, int p){
    if(m == 0 || n == m) return 1;
    if(res[n][m] != 0) return res[n][m];
    return res[n][m] = (C(n-1,m,p) + C(n-1,m-1,p)) % p;
}

方法二:基于上一步的方法二化简

//方法二:基于上一步的方法二化简
public static void calC(){
    for(int i = 0; i <= 1000; i++){
        res[i][0] = res[i][i] = 1;
    }
    for(int i = 2; i <= 1000; i++){
        for(int j = 1; j <= i/2; j++){
            res[i][j] = (res[i-1][j] + res[i-1][j-1]) % p;
            res[i][i-j] = res[i][j];
        }
    }
}

方法三:质因子分解。每个质因子做%p操作,之后再相乘

//方法三:质因子分解。每个质因子做%p操作,之后再相乘
private static int[] prime;//静态质数列表
public static void main(String[] args) throws Exception{
    calPrime();
    int res = C(6,2,7);
    System.out.println(res);
}

//计算C(n,m)%p
public static int C(int n, int m, int p){
    int ans = 1;
    for(int i = 0; prime[i] <= n; i++){
        int c = cal(n, prime[i]) - cal(m, prime[i]) - cal(n-m, prime[i]);
        ans = ans * binaryPow(prime[i], c, p) % p;
    }
    return ans;
}

//快速幂a^b%p
public static int binaryPow(int a, int b, int p){
    if(b == 0)return 1;
    if(b % 2 == 1)return a * binaryPow(a, b-1, p) % p;
    else{
        int mul = binaryPow(a, b/2, p);
        return mul*mul % p;
    }
}

//计算因子p的个数
public static int cal(int n, int p){
    int res = 0;
    while(n != 0){
        res += n/p;
        n = n/p;
    }
    return res;
}

//获取质数列表
public static int[] calPrime(){
    int maxn = 10010;
    prime = new int[maxn];
    boolean[] p = new boolean[maxn];
    int pNum = 0;
    for(int i = 2; i < maxn; i++){
        if(p[i] == false){
            prime[pNum++] = i;
        }
        for(int j = i + i; j < maxn; j += i){
            p[j] = true;
        }
    }
    return prime;
}

方法四:之后再学习

方法五:Lucas定理

原理:将分解为p进制数,再分别对每一位进行组合数计算,再相乘

要求:p是素数

疑问:出现C(4,5)情况计算错误怎么解决

int Lucas(int n, int m){
    if(m == 0) return 1;
    return C(n % p, m % p) * Lucas(n/p, m/p, p) % p;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值