实体链接 ELQ

论文:Efficient One-Pass End-to-End Entity Linking for Questions

代码:BLINK/elq at main · facebookresearch/BLINK · GitHub

ELQ是一个面向问答的端到端实体链接模型,它可以用双编码器先后实现实体提及的识别和实体链接。 ELQ可用于下游的问答系统。

模型

方法

给定一个问题 q 和一组来自维基百科的实体  (每个实体都有标题和文本描述),我们的目标是输出三元组列表。其中 是问题q中从 之间的分词提及广度对应的实体。实践中,我们将有关实体的维基百科文章的标题和前128个分词作为该实体的标题和描述

本文提出了一个端到端的实体链接系统,它可以基于BERT对问题先后进行提及检测和实体消歧。

给定一个长度为n的输入问题q = q1···qn,基于BERT获取该问题的分词表示。

然后,获取每个实体  的实体表示

 

识别实体提及

 为了计算候选span [i, j]作为一个实体被提及的可能性得分。

① 计算每个分词作为一个提及的开始或结束的得分。

 ② 计算每个分词作为一个提及的中间的得分。

 ③ 计算实体提及可能性。

 

 实体消歧

 ① 通过取qi···qj的平均值来获得每个提及候选[i, j]的提及表示法,并计算提及候选(问题中的)与实体候选(知识库中的)之间的相似度得分s。

② 基于提及[i,j] ,计算所有实体的可能性分布。

 

 模型训练

我们通过优化它们的损失和,联合训练 识别实体提及 和 实体消歧 组件。

我们在所有的提及候选中使用二元交叉熵损失函数:

 

实体消歧损失函数:

 为了加速训练,我们使用了一种简单的迁移学习技术。我们使用Wu等人(2020)在维基百科上训练的实体编码器,保持其权重不变,只在问答数据上训练问题编码器。此外,我们还挖掘负样例。由于实体编码是固定的,所以实时快速搜索负样例是可能的。

 

推理

给定一个输入问题q,我们使用 提及检测模型 来获得我们的实体提及集合

M =

 其中,是一个阈值(超参数)。

然后根据,我们计算每个实体提及的可能性分布和阈值:

 

实验

数据集

原始数据集:WebQSP(2016) 和 GraphQuestions(2016)。

原始数据集没有注释所有提及边界标签。因此,为了评估提及检测和实体消除歧义,我们扩展了之前的标签,并创建了新的端到端问题实体链接数据集

 Baselines

(1) TAGME(2012)

(2)  VCG(2018)

(3)  BLINK(2020)

 

实验结果

 

 小结:

通过BERT,ELQ 可以将实体识别和实体链接放在一起实现,相比之前分开实现的模型,这很大的提高了效率,并且性能也很好。但是如果要用ELQ的话需要在对原始数据集进行处理(对实体提及的边界进行标注),感觉是比较麻烦的。当然如果直接用本文提到的数据集应该会减少很多工作量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值