Y=XZ和Y=ZX的区别

10 篇文章 0 订阅

PS: 个人随性整理,对不对,请自行辩证


1. 线代中的左行右列

线性代数中的矩阵乘法,有 左行右列 的说法。
在这里插入图片描述

2. 机器学习中的 Y=XZ和Y=ZX的区别

2.1 Y=XZ

X = [ x 1 , x 2 , … , x i , … , x n ] ∈ R m × n , Z = [ z 1 , z 2 , … , z i , … , z n ] ∈ R n × n X = \big [ x_1,x_2,\dots, x_i, \dots,x_n \big] \in R^{m \times n}, Z=\big [ z_1,z_2,\dots, z_i, \dots,z_n \big] \in R^{n \times n} X=[x1,x2,,xi,,xn]Rm×n,Z=[z1,z2,,zi,,zn]Rn×n,

Y = X Z = X [ z 1 , z 2 , … ] = [ X z 1 , X z 2 , … ] Y=XZ = X\big [ z_1,z_2,\dots\big]=\big [ Xz_1,Xz_2,\dots\big] Y=XZ=X[z1,z2,]=[Xz1,Xz2,]

如果令Y=X,则 z j i z_{ji} zji可以看成是 x j x_j xj x i x_i xi的权重。但前提是X中每个列向量代表一个实例。

2.2 Y=ZX

X = [ x 1 ; x 2 , ; …   ; x i ; …   ; x n ] ∈ R n × m , Z = [ z 1 ; z 2 ; …   ; z i ; …   ; z n ] ∈ R m × m X = \big [ x_1;x_2,;\dots; x_i; \dots;x_n \big] \in R^{n \times m}, Z=\big [ z_1;z_2;\dots; z_i; \dots;z_n \big] \in R^{m \times m} X=[x1;x2,;;xi;;xn]Rn×m,Z=[z1;z2;;zi;;zn]Rm×m,

Y = Z X = [ z 1 ; z 2 ; … ] X = [ z 1 X ; z 2 X ; … ] Y=ZX = \big [ z_1;z_2;\dots\big]X=\big [ z_1X;z_2X;\dots\big] Y=ZX=[z1;z2;]X=[z1X;z2X;]

如果令Y=X,则 z j i z_{ji} zji可以看成是 x i x_i xi x j x_j xj的权重。但前提是X中每个行向量代表一个实例。

参考:
Lyu G, Feng S, Huang W, et al. Partial label learning via low-rank representation and label propagation[J]. Soft Computing, 2020, 24: 5165-5176.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
(1) 首先验证交换律:对于任意的 $x,y\in Q$,有 $x\inf y=y\inf x$ 吗? $$ \begin{aligned} x\inf y &= x+y+6xy \\ y\inf x &= y+x+6yx \end{aligned} $$ 比较两式可得:$x\inf y = y\inf x$ 成立。 接下来验证结合律:对于任意的 $x,y,z\in Q$,有 $(x\inf y)\inf z=x\inf(y\inf z)$ 吗? $$ \begin{aligned} (x\inf y)\inf z &= (x+y+6xy)\inf z \\ &= (x+y+6xy)+z+6(x+y+6xy)z \\ &= x+y+z+6xy+6xz+6yz+36xyz \\ x\inf(y\inf z) &= x\inf(y+z+6yz) \\ &= x+(y+z+6yz)+6x(y+z+6yz) \\ &= x+y+z+6xy+6xz+6yz+36xyz \end{aligned} $$ 因此,$(x\inf y)\inf z=x\inf(y\inf z)$ 成立,$\inf$ 运算满足交换律和结合律。 (2) 首先求解单位元:设 $e$ 是 $\inf$ 运算的单位元,则对于任意 $x\in Q$,都有 $x\inf e = e\inf x = x$。 $$ \begin{aligned} x\inf e &= x+e+6xe=x \\ e\inf x &= e+x+6ex=x \end{aligned} $$ 解得 $e=0$,即 $\inf$ 运算的单位元为 $0$。 接下来求解零元:设 $z$ 是 $\inf$ 运算的零元,则对于任意 $x\in Q$,都有 $x\inf z = z\inf x = z$。 $$ \begin{aligned} x\inf z &= x+z+6xz=z \\ z\inf x &= z+x+6zx=z \end{aligned} $$ 解得 $z=-\frac{1}{6}$,即 $\inf$ 运算的零元为 $-\frac{1}{6}$。 最后求解可逆元:设 $y$ 是 $\inf$ 运算的可逆元,则存在另一个元素 $y^{-1}$,使得 $y\inf y^{-1}=y^{-1}\inf y=0$。 $$ \begin{aligned} y\inf y^{-1} &= y+y^{-1}+6yy^{-1}=0 \\ y^{-1}\inf y &= y^{-1}+y+6y^{-1}y=0 \end{aligned} $$ 解得 $y^{-1}=-\frac{1}{6(y+1)}$。注意,当 $y=-1$ 时,分母为 $0$,$-\frac{1}{6(y+1)}$ 没有定义,因此 $-1$ 不是 $\inf$ 运算的可逆元。 综上,$\inf$ 运算的单位元为 $0$,零元为 $-\frac{1}{6}$,可逆元为 $Q\backslash\{-1\}$ 中的所有元素。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值