专转本多元函数微分学

二元函数的极限计算方法

下面的k为任意常数
  1. 二元函数的极限计算
    步 骤 1 : 判 断 极 限 lim ⁡ ( x , y ) → ( 0 , 0 ) f ( x , y ) 是 否 存 在 步骤1:判断极限\lim_{(x,y) \to (0,0)}{f(x,y)}是否存在 1:(x,y)(0,0)limf(x,y)
    方法:令y= kx(k为在意常数),然后把y=kx 代入到昨二元幽数f(x,y),这样一来,二元函数的极限 lim ⁡ ( x , y ) → ( 0 , 0 ) f ( x , y ) \lim_{(x,y) \to (0,0)}{f(x,y)} lim(x,y)(0,0)f(x,y)会变成一元函数的极限。然后我就变成了极限的问题。
    如果算完发现是边 ∞ \infty 或者答案中含有k大那么就说明二元函数的极限 lim ⁡ ( x , y ) → ( 0 , 0 ) f ( x , y ) \lim_{(x,y) \to (0,0)}{f(x,y)} lim(x,y)(0,0)f(x,y)不存在(极限值是惟一的,但是k代表 任 意 任意 常数)
    如果求出来的是一个数字,那么按照第二步来
    limf(, y是否存在。
  2. 步 骤 2 : 判 断 极 限 lim ⁡ ( x , y ) → ( 0 , 0 ) f ( x , y ) 是 否 存 在 步骤2:判断极限\lim_{(x,y) \to (0,0)}{f(x,y)}是否存在 2:(x,y)(0,0)limf(x,y)
    方法:令 y = k x 2 , 然 后 把 y = k x 2 代 入 到 元 函 数 f ( x , y ) , 二 元 函 数 的 极 限 lim ⁡ ( x , y ) → ( 0 , 0 ) f ( x , y ) y =kx^2 ,然后把y=kx^2代入到元函数f(x,y),二元函数的极限\lim_{(x,y) \to (0,0)}{f(x,y)} y=kx2y=kx2f(x,y),lim(x,y)(0,0)f(x,y)就变成了一元函数的极限,重复步骤一
    如果算完发现是边 ∞ \infty 或者答案中含有k大那么就说明二元函数的极限 lim ⁡ ( x , y ) → ( 0 , 0 ) f ( x , y ) \lim_{(x,y) \to (0,0)}{f(x,y)} lim(x,y)(0,0)f(x,y)不存在(极限值是惟一的,但是k代表 任 意 任意 常数)
    如果求出来的是一个数字,那么按照第二步来
  3. 步 骤 3 : 判 断 极 限 lim ⁡ ( x , y ) → ( 0 , 0 ) f ( x , y ) 是 否 存 在 步骤3:判断极限\lim_{(x,y) \to (0,0)}{f(x,y)}是否存在 3:(x,y)(0,0)limf(x,y)
    方法:第三步求极限 lim ⁡ ( x , y ) → ( 0 , 0 ) f ( x , y ) \lim_{(x,y) \to (0,0)}{f(x,y)} lim(x,y)(0,0)f(x,y)。令y=0,将y=0代入f(x,y) 重复步骤一
习题

lim ⁡ ( x , y ) → ( 0 , 0 ) x 2 + y 2 x 2 + y 2 + ( x − y ) 2 \lim_{(x,y) \to (0,0)}{\frac{x^2+y^2}{x^2+y^2+(x-y)^2}} (x,y)(0,0)limx2+y2+(xy)2x2+y2
二元函数微分学
lim ⁡ ( x , y ) → ( 0 , 0 ) x 2 + y 2 x 2 + y \lim_{(x,y) \to (0,0)}{\frac{x^2+y}{2x^2+y}} (x,y)(0,0)lim2x2+yx2+y
二元函数微分学 f ( x , y ) = { x y x 2 + y 2       ( x , y ) ≠ 0 a                    x = 0 的 ( ) f(x,y)= \left\{ \begin{aligned} \frac{xy}{x^2+y^2} ~~~~~(x,y)\not =0\\ a~~~~~~~~~~~~~~~~~~ x=0 \end{aligned} \right.的() f(x,y)=x2+y2xy     (x,y)=0a                  x=0
在这里插入图片描述

二元函数的连续性

判 断 f ( x , y ) = { x y x 2 + y 2       ( x , y ) ≠ 0 a                    x = 0 在 f ( x , y ) 在 ( 0 , 0 ) 处 是 否 连 续 判断f(x,y)= \left\{ \begin{aligned} \frac{xy}{x^2+y^2} ~~~~~(x,y)\not =0\\ a~~~~~~~~~~~~~~~~~~ x=0 \end{aligned} \right.在f(x,y)在(0,0)处是否连续 f(x,y)=x2+y2xy     (x,y)=0a                  x=0f(x,y)0,0
在这里插入图片描述

偏导数与全微分

解题方法:

f ( x , y ) 是 二 元 函 数 , 自 变 量 为 x 和 y f(x,y)是二元函数,自变量为x和y f(x,y)xy

  1. ∂ z ∂ x 的 方 法 , 在 z = f ( x , y ) 中 , 将 y 看 做 常 数 , 对 x 求 导 \frac{\partial z}{\partial x}的方法,在z = f(x,y)中,将y看做常数,对x求导 xzz=f(x,y)yx
  2. ∂ z ∂ y 的 方 法 , 在 z = f ( x , y ) 中 , 将 x 看 做 常 数 , 对 y 求 导 \frac{\partial z}{\partial y}的方法,在z = f(x,y)中,将x看做常数,对y求导 yzz=f(x,y)xy
  3. d z 的 方 法 , 求 出 ∂ z ∂ x , ∂ z ∂ y 后 , 全 微 分 d z = ∂ z ∂ x d x + ∂ z ∂ y d y dz的方法,求出{\frac{\partial z}{\partial x}},{\frac{\partial z}{\partial y}}后,全微分dz={\frac{\partial z}{\partial x}}dx+{\frac{\partial z}{\partial y}}dy dzxz,yzdz=xzdx+yzdy

三元函数的求法 u = f ( x , y , z ) u=f(x,y,z) u=f(x,y,z)
∂ u ∂ x 同 样 将 y , z 看 做 常 数 , 对 x 两 边 求 导 即 可 , ∂ u ∂ y , ∂ u ∂ z 以 此 类 推 , d u 同 前 面 的 差 不 多 \frac{\partial u}{\partial x}同样将y,z看做常数,对x两边求导即可,\frac{\partial u}{\partial y},\frac{\partial u}{\partial z}以此类推,du同前面的差不多 xuy,zxyu,zudu

习题

z = e − x s i n x y 求 ∂ z ∂ x , ∂ z ∂ y , d z z = e^{-x}sin\frac{x}{y}求\frac{\partial z}{\partial x},\frac{\partial z}{\partial y},dz z=exsinyxxz,yz,dz
偏导数习题

求二元函数的 隐 函 数 隐函数 偏导数

由 f ( x , y ) = 0 , 确 定 z 为 x , y 的 函 数 ∂ z ∂ x , ∂ z ∂ y 由f(x,y)=0,确定z为x,y的函数\frac{\partial z}{\partial x},\frac{\partial z}{\partial y} f(x,y)=0,zx,yxz,yz
∂ y ∂ x 的 方 法 , 将 y 看 作 常 数 , 方 程 f ( x , y , z ) = 0 对 x 求 偏 导 , 但 是 哈 z ′ = ∂ z ∂ x \frac{\partial y}{\partial x}的方法,将y看作常数,方程f(x,y,z) = 0 对x求偏导,但是哈z' = \frac{\partial z}{\partial x} xyyf(x,y,z)=0xz=xz
设 x z = e y + z 确 定 z 是 x , y 的 函 数 , 求 ∂ z ∂ y , ∂ z ∂ x 设\frac{x}{z} = e^{y+z} 确定z是x,y的函数,求\frac{\partial z}{\partial y},\frac{\partial z}{\partial x} zx=ey+zzx,yyz,xz
二元函数隐函数求偏导

高阶偏导数

  1. ∂ 2 z ∂ x ∂ y , 由 z = f ( x , y ) 两 边 对 x 求 偏 导 的 ∂ z ∂ x , 在 对 y 求 偏 导 , 及 的 ∂ 2 z ∂ x ∂ y , 这 个 求 偏 导 的 次 序 可 以 交 换 过 来 \frac{{\partial}^2z}{\partial x \partial y},由z = f(x,y)两边对x求偏导的\frac{\partial z}{\partial x},在对y求偏导,及的\frac{{\partial}^2z}{\partial x \partial y},这个求偏导的次序可以交换过来 xy2z,z=f(x,y)xxz,yxy2z,
  2. ∂ 2 z ∂ x 2 , 由 z = f ( x , y ) 两 边 对 x 求 偏 导 的 ∂ z ∂ x , 再 对 x 求 偏 导 , 及 的 ∂ 2 z ∂ x 2 \frac{{\partial}^2z}{{\partial x }^2},由z = f(x,y)两边对x求偏导的\frac{\partial z}{\partial x},再对x求偏导,及的\frac{{\partial}^2z}{{\partial x }^2} x22z,z=f(x,y)xxz,xx22z
  3. ∂ 2 z ∂ y 2 , 由 z = f ( x , y ) 两 边 对 x 求 偏 导 的 ∂ z ∂ y , 再 对 y 求 偏 导 , 及 的 ∂ 2 z ∂ y 2 \frac{{\partial}^2z}{{\partial y }^2},由z = f(x,y)两边对x求偏导的\frac{\partial z}{\partial y},再对y求偏导,及的\frac{{\partial}^2z}{{\partial y }^2} y22z,z=f(x,y)xyz,yy22z
    设 z = x 2 e y x , 求 ∂ 2 z ∂ x ∂ y 设z=x^2e^{\frac{y}{x}},求\frac{{\partial}^2z}{\partial x \partial y} z=x2exy,xy2z
    高阶偏导数
    求抽象复合函数
    在这里插入图片描述

多元函数的极值

  1. 首先求得 ∂ z ∂ x , ∂ z ∂ y \frac{\partial z}{\partial x},\frac{\partial z}{\partial y} xz,yz
  2. 求出使得
    求 出 f ( x , y ) = { ∂ z ∂ x = 0 ∂ z ∂ y = 0 成 立 的 点 求出f(x,y)= \left\{ \begin{aligned} \frac{\partial z}{\partial x}=0 \\ \frac{\partial z}{\partial y }=0 \end{aligned} \right.成立的点 f(x,y)=xz=0yz=0
  3. 求 出 ∂ 2 z ∂ x 2 , ∂ 2 z ∂ x ∂ y , ∂ 2 z ∂ y 2 求出{\frac{{\partial}^2 z}{\partial x^2}},{\frac{{\partial}^2 z}{\partial x \partial y}},{\frac{{\partial}^2 z}{\partial y^2}} x22z,xy2z,y22z
  4. 将每一个成立的点 ( x 0 , y 0 ) 代 入 到 ∂ 2 z ∂ x 2 , ∂ 2 z ∂ x ∂ y , ∂ 2 z ∂ y 2 , 可 能 有 多 个 点 分 别 代 入 , 得 到 A 、 B 、 C (x_0,y_0)代入到{\frac{{\partial}^2 z}{\partial x^2}},{\frac{{\partial}^2 z}{\partial x \partial y}},{\frac{{\partial}^2 z}{\partial y^2}},可能有多个点分别代入,得到A、B、C x0,y0x22z,xy2z,y22zABC
    然后据下表判断
A C − B 2 AC-B^2 ACB2>0同时A>0极小值点
A C − B 2 AC-B^2 ACB2>0同时A<0极大值点
A C − B 2 AC-B^2 ACB2=0无法判断
A C − B 2 AC-B^2 ACB2<0不是极值点

将极值点代入原函数即可

习题

求函数 f ( x , y ) = x 3 + y 3 + 3 x 2 + 3 y 3 − 9 x 的 极 值 f(x,y)=x^3+y^3+3x^2+3y^3-9x的极值 f(x,y)=x3+y3+3x2+3y39x

  1. 由于 z = x 3 + y 3 + 3 x 2 + 3 y 3 − 9 x z = x^3+y^3+3x^2+3y^3-9x z=x3+y3+3x2+3y39x
    ∴ ∂ z ∂ x = 3 x 2 + 6 x − 9 \therefore {\frac{{\partial} z}{\partial x}} = 3x^2 +6x-9 xz=3x2+6x9
    ∴ ∂ z ∂ y = − 3 y 2 + 6 y \therefore {\frac{{\partial} z}{\partial y}} =-3y^2+6y yz=3y2+6y
  2. 令 { 3 x 2 + 6 x − 9 = 0 − 3 y 2 + 6 y      = 0 得 到 四 个 点 ( 1 , 0 ) , ( 1 , 2 ) , ( − 3 , 0 ) , ( − 3 , 2 ) 令\begin{cases} 3x^2 +6x-9=0 \\ -3y^2+6y~~~~=0 \end{cases}得到四个点(1,0),(1,2),(-3,0),(-3,2) {3x2+6x9=03y2+6y    =01,01,23,03,2
  3. 算 出 ∂ 2 z ∂ x 2 = 6 x + 6    ∂ 2 z ∂ x ∂ y = 0      ∂ 2 z ∂ y 2 = − 6 y + 6 算出{\frac{{\partial}^2 z}{\partial x^2}}=6x+6~~{\frac{{\partial}^2 z}{\partial x \partial y}}=0~~~~{\frac{{\partial}^2 z}{\partial y^2}}=-6y+6 x22z=6x+6  xy2z=0    y22z=6y+6
  4. 先关注点(1,0)
    ∂ 2 z ∂ x 2 = 6 x + 6    ∂ 2 z ∂ x ∂ y = 0      ∂ 2 z ∂ y 2 = − 6 y + 6 {\frac{{\partial}^2 z}{\partial x^2}}=6x+6~~{\frac{{\partial}^2 z}{\partial x \partial y}}=0~~~~{\frac{{\partial}^2 z}{\partial y^2}}=-6y+6 x22z=6x+6  xy2z=0    y22z=6y+6
    代 入 点 ( 1 , 0 ) 得 ∂ 2 z ∂ x 2 = 6 + 6 = 12 = A    ∂ 2 z ∂ x ∂ y = 0 = B      ∂ 2 z ∂ y 2 = − 6 ∗ 0 + 6 = 6 = C 代入点(1,0)得{\frac{{\partial}^2 z}{\partial x^2}}=6+6=12=A~~{\frac{{\partial}^2 z}{\partial x \partial y}}=0=B~~~~{\frac{{\partial}^2 z}{\partial y^2}}=-6 *0+6=6=C 1,0x22z=6+6=12=A  xy2z=0=B    y22z=60+6=6=C
    由 于 A C − B 2 = 72 > 0 且 A > 0 由于AC-B^2=72>0 且 A>0 ACB2=72>0A>0
    ∴ 点 ( 1 , 0 ) 处 是 极 小 值 点 \therefore 点(1,0)处是极小值点 1,0
    关注点(1,2)
    ∂ 2 z ∂ x 2 = 6 x + 6    ∂ 2 z ∂ x ∂ y = 0      ∂ 2 z ∂ y 2 = − 6 y + 6 {\frac{{\partial}^2 z}{\partial x^2}}=6x+6~~{\frac{{\partial}^2 z}{\partial x \partial y}}=0~~~~{\frac{{\partial}^2 z}{\partial y^2}}=-6y+6 x22z=6x+6  xy2z=0    y22z=6y+6
    代 入 点 ( 1 , 2 ) 得 ∂ 2 z ∂ x 2 = 6 + 6 = 12 = A    ∂ 2 z ∂ x ∂ y = 0 = B      ∂ 2 z ∂ y 2 = − 6 = C 代入点(1,2)得{\frac{{\partial}^2 z}{\partial x^2}}=6+6=12=A~~{\frac{{\partial}^2 z}{\partial x \partial y}}=0=B~~~~{\frac{{\partial}^2 z}{\partial y^2}}=-6=C 1,2x22z=6+6=12=A  xy2z=0=B    y22z=6=C
    由 于 A C − B 2 = − 72 < 0 由于AC-B^2=-72<0 ACB2=72<0
    ∴ 点 ( 1 , 2 ) 处 不 是 极 小 值 点 \therefore 点(1,2)处不是极小值点 1,2
    关注点(-3,0)
    ∂ 2 z ∂ x 2 = 6 x + 6    ∂ 2 z ∂ x ∂ y = 0      ∂ 2 z ∂ y 2 = − 6 y + 6 {\frac{{\partial}^2 z}{\partial x^2}}=6x+6~~{\frac{{\partial}^2 z}{\partial x \partial y}}=0~~~~{\frac{{\partial}^2 z}{\partial y^2}}=-6y+6 x22z=6x+6  xy2z=0    y22z=6y+6
    代 入 点 ( − 3 , 0 ) 得 ∂ 2 z ∂ x 2 = − 12 = A    ∂ 2 z ∂ x ∂ y = 0 = B      ∂ 2 z ∂ y 2 = 6 = C 代入点(-3,0)得{\frac{{\partial}^2 z}{\partial x^2}}=-12=A~~{\frac{{\partial}^2 z}{\partial x \partial y}}=0=B~~~~{\frac{{\partial}^2 z}{\partial y^2}}=6=C 3,0x22z=12=A  xy2z=0=B    y22z=6=C
    由 于 A C − B 2 = − 72 < 0 由于AC-B^2=-72<0 ACB2=72<0
    ∴ 点 ( − 3 , 0 ) 处 不 是 极 小 值 点 \therefore 点(-3,0)处不是极小值点 3,0
    关注点(-3,2)
    ∂ 2 z ∂ x 2 = 6 x + 6    ∂ 2 z ∂ x ∂ y = 0      ∂ 2 z ∂ y 2 = − 6 y + 6 {\frac{{\partial}^2 z}{\partial x^2}}=6x+6~~{\frac{{\partial}^2 z}{\partial x \partial y}}=0~~~~{\frac{{\partial}^2 z}{\partial y^2}}=-6y+6 x22z=6x+6  xy2z=0    y22z=6y+6
    代 入 点 ( − 3 , 2 ) 得 ∂ 2 z ∂ x 2 = − 12 = A      ∂ 2 z ∂ x ∂ y = 0 = B      ∂ 2 z ∂ y 2 = − 6 = C 代入点(-3,2)得{\frac{{\partial}^2 z}{\partial x^2}}=-12=A~~~~{\frac{{\partial}^2 z}{\partial x \partial y}}=0=B~~~~{\frac{{\partial}^2 z}{\partial y^2}}=-6=C 3,2x22z=12=A    xy2z=0=B    y22z=6=C
    由 于 A C − B 2 = 72 > 0 且 A < 0 由于AC-B^2=72>0 且 A<0 ACB2=72>0A<0
    ∴ 点 ( 1 , 0 ) 处 是 极 大 值 点 \therefore 点(1,0)处是极大值点 1,0
  5. 将找出的极值点(1,0)、(-3,2)代入
    f ( 1 , 0 ) m a x = − 5     f ( − 3 , 2 ) m i n = 31 f(1,0)_{max}=-5~~~f(-3,2)_{min}=31 f(1,0)max=5   f(3,2)min=31

多元函数的条件极值

  1. 将原函数变为f(x)=0
  2. 做拉格朗日函数L
  3. 分别对L求偏导
  4. 令每一个求出的偏导等于0,然后同题目的附加条件极喝
  5. 解除该方程
习题

求函数 u = x y z 在 附 加 条 件 1 x + 1 y + 1 z = 1 a ( a > 0 为 常 数 , x > 0 , y > 0 , z > 0 ) u=xyz在附加条件\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{a}(a>0为常数,x>0,y>0,z>0) u=xyzx1+y1+z1=a1(a>0x>0,y>0,z>0)

  1. 将其变为 1 x + 1 y + 1 z − 1 a = 0 \frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{a}=0 x1+y1+z1a1=0
  2. 变为 L ( x , y , z ) = x y z + λ ( 1 x + 1 y + 1 z − 1 a ) L(x,y,z)=xyz+\lambda(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{a}) L(x,y,z)=xyz+λ(x1+y1+z1a1)
  3. ∂ z ∂ x = y z − λ x 2 \frac{\partial z}{\partial x}=yz-\frac{\lambda}{x^2} xz=yzx2λ
    ∂ z ∂ y = x z − λ y 2 \frac{\partial z}{\partial y}=xz-\frac{\lambda}{y^2} yz=xzy2λ
    ∂ z ∂ z = x y − λ z 2 \frac{\partial z}{\partial z}=xy-\frac{\lambda}{z^2} zz=xyz2λ
  4. 令每一个偏导为0
    y z − λ x 2 = 0 yz-\frac{\lambda}{x^2}=0 yzx2λ=0
    x z − λ y 2 = 0 xz-\frac{\lambda}{y^2}=0 xzy2λ=0
    x y − λ z 2 = 0 xy-\frac{\lambda}{z^2}=0 xyz2λ=0
  5. 解方程组
    令 { y z − λ x 2 = 0 x z − λ y 2 = 0 x y − λ z 2 = 0 1 x + 1 y + 1 z = 1 a 令\begin{cases} yz-\frac{\lambda}{x^2}=0\\ xz-\frac{\lambda}{y^2}=0\\ xy-\frac{\lambda}{z^2}=0\\ \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{a} \end{cases} yzx2λ=0xzy2λ=0xyz2λ=0x1+y1+z1=a1
  6. { y z − λ x 2 = 0 → λ = x 2 y z x z − λ y 2 = 0 → λ = y 2 x z x y − λ z 2 = 0 → λ = z 2 x z 1 x + 1 y + 1 z = 1 a \begin{cases} yz-\frac{\lambda}{x^2}=0 \to \lambda=x^2yz\\ xz-\frac{\lambda}{y^2}=0\to \lambda=y^2xz\\ xy-\frac{\lambda}{z^2}=0\to \lambda=z^2xz\\ \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{a} \end{cases} yzx2λ=0λ=x2yzxzy2λ=0λ=y2xzxyz2λ=0λ=z2xzx1+y1+z1=a1
    λ = x 2 y z = λ y 2 x z = λ = z 2 x z → z = x = y → x = y = z = 3 a \lambda=x^2yz= \lambda y^2xz= \lambda=z^2xz \to z=x=y \to x=y=z=3a λ=x2yz=λy2xz=λ=z2xzz=x=yx=y=z=3a

最后,我想说大纲很重要,学完了就觉得自己很厉害,(虽然以前我以前也这样),然后就去做数学一、二了,但是,你看大纲了吗?步伐太大会扯着蛋

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值