数学分析(十八)-隐函数定理及其应用04:条件极值问题【拉格朗日乘数法】【求体积固定正方体开口水箱最小表面积⇒构造拉格朗日函数:L(x,y,z,λ)=2(xz+yz)+xy+λ(xyz−V)⇒求偏导】

本文介绍了如何使用拉格朗日乘数法解决条件极值问题,以设计容量为V的水箱为例,通过构建拉格朗日函数找到使表面积最小的长、宽、高比例,揭示了该方法在解决实际问题中的应用,并通过其他例子进一步阐述其原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以往所讨论的极值问题, 其极值点的搜索范围是目标函数的定义域, 但是另外还有很多极值问题, 其极值点的搜索范围还受到各自不同条件的限制.

例如, 要设计一个容量为 V V V 的长方形开口水箱,试问水箱的长、宽、高各等于多少时, 其表面积最小?为此,设水箱的长、宽、高分别为 x , y , z x, y, z x,y,z, 则表面积为

S ( x , y , z ) = 2 ( x z + y z ) + x y . S(x, y, z)=2(x z+y z)+x y . S(x,y,z)=2(xz+yz)+xy.

依题意, 上述表面积函数的自变量不仅要符合定义域的要求 ( x > 0 , y > 0 , z > 0 ) (x>0, y>0, z>0) (x>0,y>0,z>0), 而且还须满足条件

x y z = V . ( 1 ) x y z=V . \quad\quad(1) xyz=V.(1)

这类附有约束条件的极值问题称为条件极值问题(不带约束条件的极值问题不妨称为无条件极值问题).

条件极值在实际问题中的应用非常广泛, 并且还能用来证明或建立不等式.

条件极值问题的一般形式是在条件组

φ k ( x 1 , x 2 , ⋯   , x n ) = 0 , k = 1 , 2 , ⋯   , m ( m < n ) ( 2 ) \boldsymbol{\varphi}_{k}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=0, k=1,2, \cdots, m \quad(m<n) \quad\quad(2) φk(x1,x2,,xn)=0,k=1,2,,m(m<n)(2)

的限制下, 求目标函数

y = f ( x 1 , x 2 , ⋯   , x n ) ( 3 ) y=f\left(x_{1}, x_{2}, \cdots, x_{n}\right) \quad\quad(3) y=f(x1,x2,,xn)(3)

的极值.

过去遇到这类极值问题时, 只能用消元法化为无条件极值问题来求解, 如上面的例子, 由条件 (1) 解出 z = V / x y z=V / x y z=V/xy, 并代人函数 S ( x , y , z ) S(x, y, z) S(x,y,z) 中, 得到

F ( x , y ) = S ( x , y , V x y ) = 2 V ( 1 y + 1 x ) + x y . F(x, y)=S\left(x, y, \cfrac{V}{x y}\right)=2 V\left(\cfrac{1}{y}+\cfrac{1}{x}\right)+x y . F(x,y)=S(x,y,xyV)=2V(y1+x1)+xy.

然后按 ( F x , F y ) = ( 0 , 0 ) \left(F_{x}, F_{y}\right)=(0,0) (Fx,Fy)=(0,0), 求出稳定点 x = y = 2 V 3 x=y=\sqrt[3]{2 V} x=y=32V , 并有 z = 1 2 2 V 3 z=\cfrac{1}{2} \sqrt[3]{2 V} z=2132V . 最后判定在此稳定点上取得最小面积 S = 3 4 V 2 3 S=3 \sqrt[3]{4 V^{2}} S=334V2 .

然而,在一般情形下要从条件组 (2) 中解出 m m m 个变元并不总是可能的.

下面我们介绍的拉格朗日乘数法就是一种不直接依赖消元而求解条件极值问题的有效方法.

我们从 f , φ f, \varphi f,φ 皆为二元函数这一简单情况人手. 欲求函数

z = f ( x , y ) ( 4 ) z=f(x, y) \quad\quad(4) z=f(x,y)(4)

的极值, 其中 ( x , y ) (x, y) (x,y) 受条件

C : φ ( x , y ) = 0 ( 5 ) C: \varphi(x, y)=0 \quad\quad(5) C:φ(x,y)=0(5)

的限制.

若把条件 C C C 看作 ( x , y ) (x, y) (x,y) 所满足的曲线方程, 并设 C C C 上的点 P 0 ( x 0 , y 0 ) P_{0}\left(x_{0}, y_{0}\right) P0(x0,y0) f f f 在条件 (5) 下的极值点, 且在点 P 0 P_{0} P0 的某邻域上方程 (5) 能惟一确定可微的隐函数 y = g ( x ) y=g(x) y=g(x), 则 x = x 0 x=x_{0} x=x0必定也是 z = f ( x , g ( x ) ) = h ( x ) z=f(x, g(x))=h(x) z=f(x,g(x))=h(x) 的极值点. 故由 f f f P 0 P_{0} P0 可微, g g g x 0 x_{0} x0 可微, 得到

h ′ ( x 0 ) = f x ( x 0 , y 0 ) + f y ( x 0 , y 0 ) g ′ ( x 0 ) = 0. ( 6 ) h^{\prime}\left(x_{0}\right)=f_{x}\left(x_{0}, y_{0}\right)+f_{y}\left(x_{0}, y_{0}\right) g^{\prime}\left(x_{0}\right)=0 .\quad\quad(6) h(x0)=fx(x0,y0)+fy(x0,y0)g(x0)=0.(6)

而当 φ \varphi φ 满足隐函数定理条件时

g ′ ( x 0 ) = − φ x ( x 0 , y 0 ) φ y ( x 0 , y 0 ) . ( 7 ) g^{\prime}\left(x_{0}\right)=-\cfrac{\varphi_{x}\left(x_{0}, y_{0}\right)}{\varphi_{y}\left(x_{0}, y_{0}\right)} . \quad\quad(7) g(x0)=φy(x0,y0)φx(x0,y0).(7)

把 (7) 代人 (6) 后又得到

f x ( P 0 ) φ , ( P 0 ) − f y ( P 0 ) φ x ( P 0 ) = 0. ( 8 ) f_{x}\left(P_{0}\right) \varphi_{,}\left(P_{0}\right)-f_{y}\left(P_{0}\right) \varphi_{x}\left(P_{0}\right)=0 .\quad\quad(8) fx(P0)φ,(P0)fy(P0)φx(P0)=0.(8)
在这里插入图片描述
在几何意义上,关系式 (8) 表示曲面 z = f ( x , y ) z=f(x, y) z=f(x,y) 的等高线 f ( x , y ) = f ( P 0 ) f(x, y)=f\left(P_{0}\right) f(x,y)=f(P0) 与曲线 C C C P 0 P_{0} P0处具有公共切线 (见图18-7). 从而存在某一常数 λ 0 \lambda_{0} λ0, 使得在 P 0 P_{0} P0 处满足

f x ( P 0 ) + λ 0 φ x ( P 0 ) = 0 f y ( P 0 ) + λ 0 φ y ( P 0 ) = 0 φ ( P 0 ) = 0. } ( 9 ) \left.\begin{array}{l} f_{x}\left(P_{0}\right)+\lambda_{0} \varphi_{x}\left(P_{0}\right)=0 \\[2ex] f_{y}\left(P_{0}\right)+\lambda_{0} \varphi_{y}\left(P_{0}\right)=0 \\[2ex] \varphi\left(P_{0}\right)=0 . \end{array}\right\} \quad\quad(9) fx(P0)+λ0φx(P0)=0fy(P0)+λ0φy(P0)=0φ(P0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值