卡尔曼滤波学习(2)

本文介绍了数据融合在卡尔曼滤波中的应用,通过结合系统模型预测和传感器测量,优化状态估计。以称重物体为例,展示了如何利用卡尔曼增益求得最优估计值,最终使得数据分布更集中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据融合:

        数据融合是指将来自不同传感器或源的信息整合在一起,以提高对系统状态的估计精度。在卡尔曼滤波中,数据融合通常涉及到两个主要来源的信息:预测(系统模型)和测量(传感器数据)。

        在数据融合中,卡尔曼滤波通过结合系统模型的预测和传感器测量的信息,以最优的方式更新对系统状态的估计。这是通过计算卡尔曼增益来实现的,该增益确定了如何将预测值与测量值进行组合,以获得最优的状态估计。

下面举例说明:

        假设用两个秤去称量同一个物体重量,分别的得到重量z_{1} = 30gz_{2} = 32g,已知这两个秤都有误差,标准差分别为\sigma_{1} = 2\sigma_{2} = 4,这两个秤误差都符合正态分布。

        现在来估计该物体的最优估计值,就需要上一次提到卡尔曼增益,\hat{z} = z_{1} + K*(z_{2}-z_{1}),K\in [0,1],当K = 0\hat{z} = z_{1},当K = 1\hat{z} = z_{2}

        由上述式子我们来求最优估计值,则需要使\hat{z}的标准差\sigma_{\hat{z}}最小,即方差Var(\hat{z})最小,那么就有式子:

        Var(\hat{z}) = Var(z_{1}+K*(z_{2}-z_{1}))=Var((1-K)*z_{1}+K*z_{2})        (1)

因为z_{1}z_{2}相互独立,且(1-K)K是乘数,所有式子(1)可以转换为:

        Var(\hat{z}) = (1-K)^{2}*Var(z_{1}) + K^2*Var(z_{2})                                             (2)

\sigma_{\hat{z}}^{2}= (1-K)^2*\sigma_{1}^{2} + K^2*\sigma_{2}^{2}                                                                               (3)    

要使\sigma_{\hat{z}}最小,就需要求得K的极值点,即\frac{\mathrm{d} \sigma_{\hat{z}}}{\mathrm{d} K} = 0时,K的值,求\frac{\mathrm{d} \sigma_{\hat{z}}}{\mathrm{d} K} = -2*(1-K)*\sigma_{1}^{2} + 2*K*\sigma_{2}^{2} = 0                                                             (4)

        将\sigma_{1} = 2\sigma_{2} = 4代入(4)可得K = \frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} = 0.2,将K = 0.2代入式子(3)可得\sigma_{\hat{z}} = 1.79,代入\hat{z} = z_{1} + K*(z_{2}-z_{1})可得\hat{z} = 30.4,由此就得到该物体质量的最优估计值,这就是过程就是数据融合。

        将上述z_{1} z_{2} \hat{z}在正态分布图中分别表示出来,我们可以看到\hat{z}数据分布的更加集中,更接近于z_{1}

参考资料 【【卡尔曼滤波器】2_数学基础_数据融合_协方差矩阵_状态空间方程_观测器问题】 https://www.bilibili.com/video/BV12D4y1S7fU/?share_source=copy_web&vd_source=c29456ffa88bc7559f8ffbe6f8e8f7a5

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值