综述 | 非完全监督下基于深度学习的图像分割方法(上海交大&华为)

来源:PaperWeekly

上海交通大学人工智能研究院杨小康、沈为团队联合华为田奇团队共同发布了非完全监督(即标签有限)下的图像分割方法最新综述“A Survey on Label-efficient Deep Segmentation: Bridging the Gap between Weak Supervision and Dense Prediction”。

该工作由人工智能研究院沈为副教授主持,全文包含170余篇文献,全面总结了不同类型的监督标签在不同分割任务上的进展情况:包括无监督、弱监督、半监督、部分监督、域迁移等多种设置下的语义、实例、全景分割问题,并以统一视角--“如何缩小弱监督信号与密集预测之间的差距”进行分析,总结出用于解决这个问题的四种通用的启发式先验:① cross-label constraint (跨标签约束);② cross-pixel similarity (跨像素相似性);③ cross-view consistency (跨视图一致性);④ cross-image relation (跨图像关系)。

3bd2ab9128d798aa5e0cdb20b0744d3d.png

论文标题:

A Survey on Label-efficient Deep Segmentation: Bridging the Gap between Weak Supervision and Dense Prediction

论文作者:

Wei Shen, Zelin Peng, Xuehui Wang, Huayu Wang, Jiazhong Cen, Dongsheng Jiang, Lingxi Xie, Xiaokang Yang, Qi Tian

论文链接:

https://arxiv.org/abs/2207.01223

团队介绍:

https://shenwei1231.github.io/

744510523a2b43cd1cc4e88ad4193c04.png

不同模态的数据会被分别经过“连续向量路径”和“离散词路径”,分别为连续向量和离散词向量作为其的特征;最终的特征为二者的向量和。

01

背景与问题

图像分割是计算机视觉领域最古老最广泛的研究任务之一。它的目标是对给定的图像来生成密集的预测,根据预测的类型决定具体的分割方向,例如:给每个像素分配一个预定义的类别标签为语义分割;为每个像素预测一个对象实例标签为实例分割;或前两者的预测结果的组合为全景分割。无论哪种具体分割方向,其都能使语义相似的像素组成有意义的概念,如动态对象(人、猫、球等)和静态物体(道路、天空、水等)。 

在过去的近十年里,深度学习的出现极大地带动了图像分割领域的研究进展,特别是随着全卷积网络(FCN)的发展,诸如DeepLab系列,Mask RCNN系列等方法凭借卷积网络强大的密集特征表征能力以及独特的设计在图像分割领域大放异彩,取得了非常好的分割效果。然而这些方法也存在着一个共同的缺点,即往往分割效果与具有可用的密集标注的图像的数量是成正比的,对像素级的标签的需求量非常大。但是人为地给每一张图像做像素级的标注却非常地耗费时间与精力,这不仅限制了深度学习的进一步发展,而且限制了图像分割在真实工业场景中的应用。 

近年来,设计基于非完全监督信号来减少对密集标签依赖的分割方法越来越受到关注,非完全监督下的图像分割方法的数量呈爆发式增长,由于缺少对这些方法进行系统地归纳总结,这给研究者学习跟进最新研究进展带来不小的挑战。然而,目前仅有个别几篇相关的调研论文,且它们仅仅关注于一个特定的分割任务,并仅包含个别类型的弱标签,无法做到全面的总结。

02

本文工作

本文研究人员旨在提供一个面向于非完全监督下图像分割领域的全面的综述,分析语义分割、实例分割、全景分割三类使用弱监督信号(标签)来解决分割问题的方法之间的统一性与关联性。为了达到该目的,研究人员需要想好两个问题:1)如何对这些方法建立合适分类与关联?2)如何从统一的角度总结这些方法所使用的策略?研究人员注意到,弱标签的类型是设计非完全监督图像分割方法的关键,决定了可用信息的多少,因此试图从弱标签信号差异的角度来回答上述两个问题。

针对第一个问题,本综述首先总结出层次化的非完全监督信号的分类,具体类型包括如下所示:

1. 无监督信号:即训练集中的图像没有任何标注信号(图 2a)。

2. 粗粒度监督信号:即训练集中的图像有标注信号,但这些信号不是像素级的,无法为每一个像素提供类别信息或者实例信息。(图2b)在该类型下主要包括:

    • 图像级别的标注

    • 检测框级别的标注

    • 涂鸦级别的标注

3. 不完全监督信号:即训练集中的一部分图像有像素级的标注信号(图2c)。在该类型下主要包括:

    • 半监督标签,即属于同域的另一部分图像没有任何标签

    • 特定域的标签,即另一部分图像属于另一个域,其没有任何标注

    • 部分密集标签,即属于同域的另一部分图像有检测框级别的弱标注

4. 带噪监督信号:即有像素级别的标注,但是这些标注并不一定全部准确(图 2d)。

根据这些分类,再结合不同的任务类型,整理出来了如图 1 所示的分类表,也标注了不同任务不同标签类型下已有的代表性工作和待开发的领域。

a741b1970d69f410f14722a32e20bb0e.png

图2. 每一种弱监督信号的示意图。第一列为完全密集监督信号的例子。

针对第二个问题,本综述结合不同弱监督信号之间的关联以及对 170 余篇论文进行归纳提炼后,总结出了四种通用的启发式先验:

1. cross-label constraint,即跨标签约束:弱标签与密集标签之间具有一些约束关系,如给定图像的类别标签,我们可以知道图中必有至少一个像素属于该类别。 

2. cross-pixel similarity,即跨像素相似性:具有诸如颜色,纹理,高层次特征相似性的像素点很可能是同类像素或者同对象像素。 

3. cross-view consistency,即跨视图一致性:同一张图的不同的视角具有强关联性/预测一致性。 

4. cross-image relation,即跨图像关系:不同图像中属于同一类别的实例具有相同的语义关系。 

通过下列表 1 的代表性方法的核心做法归纳中可以看到,在各种监督信号/各种任务下,这四种先验贯穿每一种任务设定,证明了本综述总结的启发式先验具有通用性。

ac1896ab5af4d19bde33183cf64f6e4d.png

表1. 多种弱监督信号下的图像分割代表性工作。

2ec6856320c91f51c1cee65837ef7c37.png

表2. 统一的数学描述。

本综述几乎对各章节部分(即某种监督信号下的某个任务)都总结了一个具有概括性的流程图,便于研究人员明确当前已有工作的入手点与研究路线,如图 3 所示。

f163862118bcfc7b80f3379484278e3e.jpeg

图3. 部分论文图示预览

03

总结

本综述对现有不完全监督下的图像分割方法进行了归纳总结,同时也分析了未来的潜在研究方向,包括:

1. 结合文本监督的零样本图像分割。多模态技术是未来的主流方向,也更贴近人的认知系统。从文本中获得一定的语义信息可以更好的帮助新类别的识别与分割,利于零样本任务的发展。

2. 利用 Transformer 特性的不完全监督图像分割方法。当前大部分方法还是基于卷积神经网络来实现的,爆火的 Transformer 在不完全监督下的图像分割领域目前还没有被探索,许多 Transformer 特性可能对该任务具有更有力的优势。

3. 还未开拓的利用其他不完全监督信号的方案。如图 1 所示,这里依然有很多方向还没有被探索,如带噪监督信号下的实例分割等,研究者可以发掘更多合理的任务设置,充分利用现有的具有多种标注类型的数据集。

猜您喜欢:

7f99fc9cb743c0781829d021d058ef02.png 戳我,查看GAN的系列专辑~!

一顿午饭外卖,成为CV视觉前沿弄潮儿!

CVPR 2022 | 25+方向、最新50篇GAN论文

 ICCV 2021 | 35个主题GAN论文汇总

超110篇!CVPR 2021最全GAN论文梳理

超100篇!CVPR 2020最全GAN论文梳理

拆解组新的GAN:解耦表征MixNMatch

StarGAN第2版:多域多样性图像生成

附下载 | 《可解释的机器学习》中文版

附下载 |《TensorFlow 2.0 深度学习算法实战》

附下载 |《计算机视觉中的数学方法》分享

《基于深度学习的表面缺陷检测方法综述》

《零样本图像分类综述: 十年进展》

《基于深度神经网络的少样本学习综述》

b6d02d6456359a1154a67692ed356f1e.png

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值