自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(49)
  • 收藏
  • 关注

原创 【Attention】ICAFusion:用于多光谱物体检测的迭代交叉注意引导的特征融合

多光谱图像的有效特征融合在多光谱物体检测中起着至关重要的作用。以往的研究已经证明了使用卷积神经网络进行特征融合的有效性,但由于局部范围特征交互的固有缺陷,这些方法对图像错位很敏感,从而导致性能下降。为解决这一问题,我们提出了一种新颖的双交叉注意变换器特征融合框架,以模拟全局特征交互并同时捕捉跨模态的互补信息。该框架通过查询引导的交叉注意机制增强了物体特征的可辨别性,从而提高了性能。然而,为增强特征而堆叠多个变压器块会产生大量参数和较高的空间复杂性。

2024-11-06 14:24:30 548

原创 【Diffusion分割】HiDiff:医学图像分割混合扩散模型

随着深度学习(DL)技术的快速发展,医学影像分割技术得到了长足的进步。现有的基于深度学习的分割模型通常是判别性的,即它们旨在学习从输入图像到分割掩膜的映射。然而,这些判别方法忽视了底层数据分布和内在类别特征,导致特征空间不稳定。在这项工作中,我们建议利用生成模型中的底层数据分布知识来补充判别式分割方法。为此,我们提出了一种用于医学影像分割的新型混合扩散框架,称为 HiDiff,它可以协同现有的判别分割模型和新的生成扩散模型的优势。判别分割器和扩散细化器。首先,我们。

2024-10-17 10:14:40 891

原创 【Diffusion分割】Cold SegDiffusion:医学图像分割的扩散模型

随着深度学习的发展,扩散模型在医学图像分割任务中表现出了卓越的性能。然而,传统的分割扩散模型通常采用随机高斯噪声生成分割掩膜,导致分割掩膜不唯一,无法保证分割结果的可重复性。为解决这一问题,本文介绍了一种基于扩散模型的用于普通医学图像分割的新方法 Cold SegDiffusion。在该方法中,医学图像分割被概念化为一个去噪问题。覆盖医学图像的分割掩码作为分割编码器的输入,解决了因噪声随机性而产生非唯一掩码的难题。此外,对比度增强模块旨在将特征转换到频域,以解决医学图像中对比度低和边界消失的问题。

2024-10-07 11:36:02 1340

原创 【Diffusion分割】CTS:基于一致性的医学图像分割模型

在医学图像分割任务中,扩散模型已显示出巨大的潜力。然而,主流的扩散模型存在采样次数多、预测结果慢等缺点。最近,作为独立生成网络的一致性模型解决了这一问题。与扩散模型相比,一致性模型可以将采样次数减少到一次,不仅能达到类似的生成效果,还能大大加快训练和预测速度。然而,它们并不适合图像分割任务,在医学影像领域的应用也尚未得到探索。因此,本文将一致性模型应用于医学图像分割任务,设计了多尺度特征信号监督模式和损失函数引导,以实现模型收敛。实验验证了 CTS 模型在测试阶段只需一次采样就能获得较好的医学图像分割结果。

2024-10-06 16:35:30 847

原创 No module named ‘medpy‘ 解决方法

No module named 'medpy' 解决方法。

2024-09-27 15:33:06 159

原创 【Diffusion分割】体素医学图像分割的通用半监督框架

标注体素医学图像需要专业知识,而且是一个耗时的过程。因此,使用半监督学习(SSL)来训练标注数据有限的模型是非常可取的。各种 SSL 技术已被提出,特别是在半监督体积医学图像分割(SSVMIS)领域,以充分利用标记和非标记数据。然而,目前的 SSVMIS 方法 都假设标记数据和非标记数据来自同一领域,这意味着它们具有相同的分布。在实践中,医学图像通常是使用不同的扫描仪从不同的临床中心采集的,这就造成了显著的域偏移。这些偏移是由患者群体、扫描仪和扫描采集设置的差异造成的。

2024-09-25 16:06:03 820

原创 【Diffusion分割】DiffRect:半监督医学图像分割的扩散标签校正技术

现有的半监督方法高度依赖于自生成伪标签的质量,容易出现监督错误和确认偏差。同时,这些方法无法充分捕捉潜在空间中的标签分布,对无标签数据的泛化能力有限。为了解决这些问题,我们提出了一种用于半监督医学图像分割的潜在扩散标签矫正模型(DiffRect)。DiffRect 首先利用标签上下文校准模块(LCC),通过学习伪标签的类别相关性来校准类别之间的偏差关系,然后在潜在空间上应用潜在特征校正模块(LFR),通过潜在扩散来制定和校正不同层次的伪标签分布。它利用去噪网络来学习从粗到细和从细到精的连续分布传输。

2024-09-25 15:05:47 1163

原创 【Diffusion分割】MedSegDiff-v2:Diffusion模型进行医学图像分割

最近的研究揭示了 DPM 在医学图像分析领域的实用性,医学图像分割模型在各种任务中表现出的出色性能就证明了这一点。尽管这些模型最初是以 UNet 架构为基础的,但通过整合视觉Transformer机制,仍有可能提高其性能。然而,我们发现,简单地将这两个模型结合在一起会导致性能不佳。为了将这两种尖端技术有效地整合到医学图像分割中,我们提出了一种新颖的基于变换器的扩散框架,称为 MedSegDiffV2。我们在 20 个不同图像模式的医学图像分割任务中验证了它的有效性。

2024-09-25 10:41:55 1079

原创 【Diffusion分割】MedSegDiff-v1:Diffusion模型进行医学图像分割

最近的许多研究发现,Diffusion Probabilistic Model DPM 在图像去模糊、超分辨率和异常检测等各种其他视觉任务中也很有用。受 DPM 成功经验的启发,我们提出了 MedSegDiff 模型,这是第一个基于 DPM 的通用医学图像分割任务模型。为了增强 DPM 在医学图像分割中的分步区域注意力,我们提出了动态条件编码,为每个采样步骤建立状态自适应条件。此外,我们还提出了特征频率解析器(FF-Parser),以消除这一过程中高频噪声成分的负面影响。

2024-09-24 20:30:40 838

原创 【Diffusion分割】FDiff-Fusion:基于模糊学习的去噪扩散融合网络

近年来,去噪扩散模型在图像分割建模中取得了令人瞩目的成就。凭借其强大的非线性建模能力和优越的泛化性能,去噪扩散模型逐渐被应用到医学图像分割任务中,为该领域带来了新的视角和方法。然而,现有方法忽略了分割边界的不确定性和区域的模糊性,导致分割结果不稳定、不准确。为解决这一问题,本文提出了一种基于模糊学习的三维医学图像分割去噪扩散融合网络(FDiff-Fusion)。通过将去噪扩散模型集成到经典的 UNet 网络中,该模型可以有效地从输入的医学图像中提取丰富的语义信息,从而为医学图像分割提供出色的像素级表示。

2024-09-24 16:53:22 1329

原创 【医学半监督】互补一致性半监督学习

CC-Net 从互补信息的角度有效利用了无标记数据,解决了现有半监督分割算法从无标记数据中提取信息能力有限的问题。CC-Net 的互补对称结构包括一个主模式和两个辅助模式。

2024-09-20 17:48:52 842

原创 【医学半监督】置信度指导遮蔽学习的半监督医学图像分割

半监督学习(Semi-supervised learning)旨在利用少数标记数据和多数未标记数据训练出高性能模型。现有方法大多采用预测任务机制,在一致性或伪标签的约束下获得精确的分割图,但该机制通常无法克服确认偏差。针对这一问题,本文提出了一种用于半监督医学图像分割的新型置信度引导遮蔽学习具体来说,在预测任务的基础上,我们进一步引入了带有遮蔽学习的辅助生成任务,旨在重建遮蔽图像以极大地促进特征表征学习模型的能力。此外,我们还开发了一种置信度引导的遮蔽策略以增强不确定区域的模型辨别能力。此外,我们。

2024-09-20 16:57:12 912

原创 【医学半监督】对比互补掩蔽的自监督预训练半监督心脏图像分割

心脏结构分割对心脏病诊断非常重要,而使用大量注释的深度学习在这项任务中取得了显著的成绩。半监督学习(SSL)有望降低标注成本。然而,大多数半监督学习方法仅利用未标注的图像进行一致性正则化或伪标签,而忽视了其通过预训练进行特征学习的潜力。在这项工作中,我们提出了一个新颖的框架,利用自监督预训练来实现更好的半监督分割。我们的框架由两个模块组成:1)基于对比互补掩码(CCM)的自监督预训练,即对同一输入的互补掩码版本进行编码的两个网络使用对比损失,此外还使用重构损失来增强全局和局部特征学习;2)

2024-09-20 15:20:36 916

原创 【最新综述】基于深度学习的无监督点云表征学习综述(下)

在本节中,我们将回顾现有的点云 URL 方法。如图 2 所示,我们将现有方法按其前置任务大致分为四类,包括基于生成的方法、基于上下文的方法和基于URL的方法、基于多模态的方法,以及基于局部描述符的方法。根据这一分类法,我们将对现有方法进行分类,并在本节的后续小节中系统地介绍这些方法。 基于生成的点云 URL 方法涉及在训练中生成点云对象的过程。根据所采用的预文本任务,它们可进一步分为四个子类别,包括点云自重建(用于生成与输入相同的点云对象)、点云 GAN(用于生成假点云对象)、点云上采样(用于

2024-09-20 13:25:52 1516

原创 【最新综述】基于深度学习的超声自动无损检测(下)

下文提出了一系列公理,以规范为无损检测开发和应用新 DL 模型的过程,并弥合当前多种 DL 贡献与工业领域之间的差距,在工业领域,法规和检测资格至关重要。值得强调的是,这些公理已与航空航天、核能和可再生能源等多个行业的多个工业联系人进行了讨论,并符合欧洲航空安全局 [6,7] 的报告和欧洲无损检测资格认证方法 [129] 的当前期望。(2) 与模型本身有关的不可还原不确定性。目前,大多数研究都集中在原始超声波信号的去噪上,但对感兴趣元素的集中识别(如缺陷回波的 ToF 或重叠回波的分离)仍只是模糊的探索。

2024-09-11 14:43:32 800

原创 【最新综述】基于深度学习的超声自动无损检测(上)

最后,值得强调的是 Ye 等人的工作[51],他们提供了一个全面的超声波波场图像数据集和一些最著名的 DL 模型的基准。虽然这篇论文没有提出新的模型,但这项工作可以指导研究人员和从业人员选择适合自己需要的模型。在不锈钢板未损坏和 17 种不同损坏形式的情况下,使用了一组波束成形-激光发射器-接收器配置的 7000 幅超声波检测图像。

2024-09-11 12:03:05 2115

原创 【无损检测】基于用深度学习的工业超声B-Scan 图像中的焊缝缺陷

自动超声波检测(AUT)是一种无损检测(NDT)方法,广泛应用于具有重要经济意义的行业。为了确保对独有的 AUT 数据进行准确检测,专家操作员需要投入大量的精力和时间。人工智能(AI)辅助工具利用在大量实验室内 B 扫描图像(无论是增强图像还是合成图像)上训练的深度学习模型,在自动超声波判读方面表现出良好的性能,但仍需不断努力提高其准确性和适用性。要做到这一点,就必须利用超声波实验数据对其性能进行评估。

2024-09-06 16:35:19 1387

原创 【最新综述】基于机器学习的超声焊接缺陷无损检测

近年来,机器学习(ML)在无损检测(NDE)数据自动分析中的应用大幅增加。其中一个值得关注的应用是使用 ML 分析核电和其他行业焊缝在役检查的数据。这些类型的检查是根据 ASME 锅炉和压力容器规范中描述的标准进行的,需要使用可靠的无损检测技术。ML 方法的快速发展和可能方法的多样性表明,有必要评估当前用于无损检测的 ML 和自动数据分析的能力,并找出当前应用于无损检测数据自动分析的 ML 技术中存在的差距或不足。特别是,需要确定 ML 对无损检测可靠性的影响。本文讨论了有关用于自动分析焊接缺陷超声无损检测

2024-09-06 15:34:58 2027

原创 【最新综述】医学图像分割深度半监督学习(下)

Zhang 等人,2017)(图 4(b))。与 Wang,Li 等人(2022 年)和 Wu,Wang 等人(2022 年)类似,一种跨级对比学习算法(You,Zhou 等人,2022 年)被设计用来增强半监督语义分割中局部特征的表示能力。然而,多模态半监督学习面临着一些挑战,主要包括数据模态缺失(Maheshwari, Liu, & Kira, 2023)、模态间类不平衡(Zhang, Zhang et al.,2023)和多模态数据异质性(Chen, Zhou, Liu et al.,2022)。

2024-07-02 10:54:52 1074

原创 【最新综述】医学图像分割深度半监督学习(上)

最近,深度学习在各种计算机视觉任务中展现出了巨大的前景。然而,在许多实际应用中,没有大规模的标记数据集,这限制了深度学习的应用。为了解决这个问题,半监督学习引起了计算机视觉界的广泛关注,尤其是在医学图像分析领域。本文分析了现有的深度半监督医学图像分割研究,并将其分为五大类(即伪标记、一致性正则化、基于 GAN 的方法、基于对比学习的方法和混合方法)。随后,我们通过在两个常见数据集上进行实验,对几种具有代表性的方法进行了实证分析。此外,我们还指出了未来几个有前景的研究方向。

2024-07-02 10:26:56 1263

原创 【最新综述】基于伪标签的半监督语义分割

语义分割是计算机视觉领域的一个重要而热门的研究领域,其重点是根据图像中像素的语义对其进行分类。然而,有监督的深度学习需要大量数据来训练模型,而逐个像素标记图像的过程耗时费力。本综述旨在首次全面、有序地概述半监督语义分割领域中伪标签方法的最新研究成果,我们从不同角度对其进行了分类,并介绍了针对特定应用领域的具体方法。此外,我们还探讨了伪标签技术在医疗和遥感图像分割中的应用。最后,我们还针对现有挑战提出了一些可行的未来研究方向。

2024-06-27 15:28:24 2022

原创 【半监督学习】半监督学习中的时间集合

众所周知,多个神经网络的集合通常会比集合中的单个网络产生更好的预测效果。在通过 dropout(Srivastava 等人,2014 年)、dropconnect(Wan 等人,2013 年)或随机深度(Huang 等人,2016 年)正则化方法训练单个网络时,以及在 swapout 网络(Singh 等人,2016 年)中,这种效应也被间接利用,在 swapout 网络中,训练总是集中在网络的特定子集上,因此完整的网络可以被视为这些训练好的子网络的隐式集合。我们扩展了这一想法,在训练过程中,

2024-05-16 10:06:35 684

原创 【噪声学习】SELFIE:更新不干净样本的鲁棒性深度学习

由于深度神经网络具有极高的表达能力,其副作用是即使在标签噪声极高的情况下也能完全记住训练数据。为了克服对噪声标签的过度拟合,我们提出了一种名为 SELFIE 的新型鲁棒训练方法。我们的主要想法是有选择地翻新和利用可以高精度修正的不干净样本,从而逐步增加可用训练样本的数量。利用这一设计优势,SELFIE 有效地防止了错误修正带来的噪声积累风险,并充分利用了训练数据。为了验证 SELFIE 的优越性,我们使用四个真实世界或合成数据集进行了大量实验。

2024-05-14 09:50:34 783

原创 【最新点云数据增强综述】深度学习点云数据增强技术的进展

深度学习(DL)已成为点云分析任务(如检测、分割和分类)的主流和有效方法之一。为了减少深度学习模型训练过程中的过拟合,提高模型性能,尤其是在训练数据的数量和/或多样性有限的情况下,增强往往至关重要。虽然各种点云数据增强方法已被广泛应用于不同的点云处理任务中,但目前还没有关于这些方法的系统调查或综述。因此,本文对这些方法进行了调查,并将它们归入一个分类框架,其中包括基本的和专门的点云数据增强方法。通过对这些扩增方法的综合评估,本文指出了它们的潜力和局限性,为选择合适的扩增方法提供了有用的参考。

2024-05-10 14:13:34 1237

原创 【噪声学习】噪声标签的鲁棒点云分割

事实上,与二维图像标注[1]、[2]相比,三维数据的干净标签更难获得。这主要是因为1)需要标注的点数通常非常庞大,例如在 ScanNetV2 [3] 中标注一个典型的室内场景时,需要标注百万量级的点数;因此,即使是常用的三维场景数据集 ScanNetV2 [3](这已经是从 ScanNet 中提炼标签后的版本),也有很大一部分标签噪声。我们提出了点噪声自适应学习(PNAL)框架,率先解决了实例级标签噪声问题。与图像任务中的降噪方法相比,我们的框架不考虑噪声率,以应对点云特有的空间变化噪声率。

2024-05-07 11:16:43 877

原创 【弱监督语义分割】AllSpark:从transformer中的未标记特征重生标记特征,用于半监督语义分割

目前最先进的方法是用真实标签训练标注数据,用伪标签训练未标注数据。然而,这两个训练流程是分开的,这就使得标注数据在训练过程中占据主导地位,从而导致伪标签的质量低下,并因此产生次优结果。为了缓解这一问题,我们提出了 AllSpark ,它利用信道交叉注意力机制从未标明的特征中重新生成标明的特征。我们进一步引入了语义记忆和通道语义分组策略,以确保未标记的特征充分代表已标记的特征。AllSpark 为 SSSS 的架构级设计而非框架级设计提供了新的思路,从而避免了日益复杂的训练流水线设计。

2024-04-29 11:02:27 1621

原创 【弱监督点云分割】All Points Matter:用于弱监督三维分割的熵细化分布对齐

伪标签被广泛应用于弱监督三维分割任务中,在这种任务中,只有稀疏的地面真实标签可供学习使用。现有方法通常依赖经验标签选择策略(如置信度阈值法)来生成有益的伪标签,用于模型训练。然而,这种方法可能会妨碍对无标签数据点的全面利用。我们假设,这种选择性使用的原因是在未标记数据上生成的伪标签中存在噪声。伪标签中的噪声可能会导致伪标签与模型预测之间存在显著差异,从而混淆模型并对模型训练造成很大影响。为了解决这个问题,我们提出了一种新颖的学习策略,对生成的伪标签进行正则化处理,有效缩小伪标签与模型预测之间的差距。

2024-04-25 20:35:25 1011

原创 【点云语义分割】PointMatch:弱监督三维点云语义分割的一致性训练框架

点云的语义分割通常依赖于密集的标注,这既耗费精力又成本高昂,因此,研究仅对稀疏点进行标注的弱监督方案的解决方案引起了广泛关注。现有的工作从给定的标签开始,在数据(如点内关系)的指导下,将标签传播到高度相关但未标注的点上。(i) 对数据信息的利用效率不高;(ii) 对标签的依赖性很强,因此在注释数量少得多的情况下很容易被抑制。因此,我们提出了一个新颖的框架--PointMatch,它通过应用一致性正则化来充分探测数据本身的信息并同时利用弱标签作为辅助,从而同时立足于数据和标签。

2024-04-22 17:14:52 961

原创 【弱监督语义分割】DuPL:双学生鲁棒性弱监督语义分割

与繁琐的多阶段相比,带有图像级标签的单阶段弱监督语义分割(WSSS)因其简化性而受到越来越多的关注。受限于类激活图(CAM)固有的模糊性,我们发现单阶段方法经常会遇到由不正确的 CAM 伪标签引起的确认偏差,从而影响其最终的分割性能。虽然最近的研究抛弃了许多不可靠的伪标签,隐性地缓解了这一问题,但它们未能对其模型进行充分的监督。为此,我们提出了具有可信渐进学习(DuPL)的双学生框架。具体来说,我们提出了一个双学生网络,通过差异损失为每个子网络生成不同的 CAM。

2024-04-22 17:12:12 1429

原创 【点云语义分割】弱监督点云语义分割-双教师指导的对比学习

为了增强特征学习能力,我们在这项工作中引入了双教师指导的对比学习框架,用于弱监督点云语义分割。双教师框架可以减少子网络耦合,促进特征学习。此外,交叉验证方法可以过滤掉低质量样本,伪标签校正模块可以提高伪标签的质量。经过清理的未标记数据被用于根据每个类别的原型构建对比损失,从而进一步提高分割性能。早期曾有过一些半监督或弱监督点云分割的尝试 [9]、[10]。最近,这类工作通常基于具有对比学习功能的连体网络 [11]、[12]、[13]、[14]、[15]。然而,这些研究存在一些局限性。

2024-04-21 10:19:07 843

原创 【点云语义分割】弱监督点云语义分割自适应标签分布

弱监督点云语义分割因其能够减轻对点云细粒度注释的严重依赖而备受关注。然而,在实际应用中,稀疏注释通常在点云中呈现出明显的非均匀分布,这给弱监督带来了挑战。为了解决这些问题,我们提出了一种用于弱监督点云语义分割的自适应注释分布方法。具体来说,我们在梯度采样近似分析中引入了概率密度函数,并研究了稀疏注释分布的影响?。在分析的基础上,我们提出了一种标签感知的点云下采样策略,以增加训练阶段的注释比例。此外,我们还设计了乘法动态熵作为梯度校准函数,以减轻非均匀分布的稀疏注释造成的梯度偏差?

2024-04-19 15:45:44 1133

原创 【点云语义分割】自适应一致性正则化的弱监督点云分割

本文探讨了将弱监督学习中常用的一致性正则化应用于具有多种特定数据增强功能的点云学习中,而对这一问题的研究还不够深入。我们发现,将一致性约束直接应用于弱监督点云分割的方法有两大局限性:传统的基于置信度的选择会导致伪标签产生噪声而舍弃不可靠的伪标签又会导致一致性约束不足。因此,我们提出了一种新颖的可靠性自适应一致性网络(RAC-Net),利用预测信度和模型不确定性来衡量伪标签的可靠性,并对所有未标记点进行一致性训练,同时根据相应伪标签的可靠性对不同点采用不同的一致性约束。

2024-04-18 17:29:03 1183

原创 【点云语义分割】弱监督点云语义分割

研究了弱监督点云分割任务中的上下文信息学习问题

2024-04-18 15:34:40 1126

原创 视觉Transformer学习记录

此为Transformer学习记录,分享本人所找到的较好的课程、博客等供记录交流。语义分割TRM :TransUNet segformer PVT。此博主和视频解析思路一致,分块讲解其中各部。视觉transformer: VIT。已经对其有了较为很好的了解。

2024-04-08 16:13:18 179

原创 【最新综述】史上最全面的3D语义分割综述(上)

三维分割是计算机视觉领域的一个基本而具有挑战性的问题,可应用于自动驾驶、机器人、增强现实和医学图像分析。它受到了计算机视觉、图形学和机器学习界的极大关注。传统的三维分割方法基于手工创建的特征和机器学习分类器,缺乏泛化能力。在二维计算机视觉领域取得成功的推动下,深度学习技术最近已成为三维分割任务的首选工具。这导致文献中出现了大量在不同基准数据集上进行评估的方法。虽然存在关于 RGB-D 和点云分割的调查论文,但缺乏涵盖所有三维数据模式和应用领域的深入的最新调查。

2024-01-24 14:34:39 2998

原创 【最新综述】史上最全面的3D语义分割综述(下)

三维实例分割方法还能区分同一类别的不同实例。由于三维实例分割是一项对场景理解更有参考价值的任务,因此越来越受到研究界的关注。三维实例分割方法大致分为两个方向:proposal-based和proposal-free。 基于提议的方法首先预测对象提议,然后对其进行完善,生成最终的实例掩码(见图 7),从而将任务分解为两大挑战。因此,从建议生成的角度来看,这些方法可分为基于检测的方法和无检测方法。 基于检测的方法有时会将物体建议定义为三维边界框回归问题。3D-SIS Hou、Dai

2024-01-24 14:11:06 1713

原创 【最新综述】史上最全面的3D语义分割综述(中)

文献中提出了许多关于三维语义分割的深度学习方法。根据所使用的数据表示方式,这些方法可分为五类,即基于 RGB-D 图像的方法、基于投影图像的方法、基于体素的方法、基于点的方法、基于三维视频的方法和基于其他表示方式的方法。根据网络架构,基于点的方法可进一步分为基于多层感知器(MLP)的方法、基于点卷积的方法、基于图卷积的方法和基于点变换器的方法。图 4 显示了近年来深度学习在三维语义分割方面取得的阶段性成果。 RGB-D 图像中的深度图包含真实世界的几何信息,有助于区分前景物体和背景,从而为提高

2024-01-18 15:55:26 1777

原创 【最新综述】机器人视觉 SLAM 的最新综述(上)

SLAM 在机器人、无人飞行器和无人车辆的导航中发挥着重要作用。定位精度将影响避障精度。地图构建的质量直接影响后续路径规划和其他算法的性能。它是智能移动应用的核心算法。因此,机器人视觉 SLAM 具有很大的研究价值,将是未来的一个重要研究方向。研究目的本文通过回顾计算机视觉 SLAM 的最新发展情况,为相关领域的研究人员提供参考。方法:从算法、创新和应用三个方面分析了计算机视觉 SLAM 的文献。其中,近十年来共有 30 多项专利和近 30 篇文献。

2024-01-12 15:38:17 4447

原创 【最新综述】基于深度学习的无监督点云表征学习综述(上)

根据技术方法对现有的无监督点云表示学习方法进行了广泛讨论。我们还在多个广泛采用的点云数据集上对所审查的方法进行了定量基准测试和讨论。最后,我们就未来无监督点云表示学习研究中可能面临的几个挑战和问题分享了自己的浅见。

2023-12-28 11:35:48 1577 1

原创 【最新综述】弱监督3D点云语义分割综述(下)

该数据集包括3亿个点和22个分类,每个点都包含标签和分类信息,可用于点与点之间的检测、分割和分类评估。不同平台上的激光扫描仪为同一项目采集的数据在点密度、遮挡和分辨率方面会有很大差异,因此需要为不同的工作选择不同的数据采集和处理策略。S3DIS 有超过 2.15 亿个点和 13 个语义类别,包括天花板、地板、墙壁、梁、柱、窗户、门、桌子、椅子、沙发、书柜、木板和杂物。4.研究基于伪三维标注的方法是当前最热门的研究方向,未来的研究必须关注如何更好地保留标注点中真正有用的信息,并生成更准确的伪标注。

2023-12-27 20:20:36 1082

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除