中国特色!针对中文的DiT架构!腾讯混元文生图大模型开源

本文转自  机器之心编辑部

中文 AI 社区迎来了一个好消息:与 Sora 同架构的开源文生图大模型来了!

5 月 14 日,腾讯宣布旗下混元文生图大模型全面升级并全面开源,目前已在 Hugging Face 平台及 GitHub 上发布,包含模型权重、推理代码、模型算法等完整模型,可供企业与个人开发者免费商用。

bf86f2b06eb61f1b93cf237ed50979dc.png

  • 官网地址:https://dit.hunyuan.tencent.com/

  • GitHub 项目地址:https://github.com/Tencent/HunyuanDiT

  • Hugging Face 模型地址:https://huggingface.co/Tencent-Hunyuan/HunyuanDiT

  • 技术报告地址:https://tencent.github.io/HunyuanDiT/asset/Hunyuan_DiT_Tech_Report_05140553.pdf

据了解,这是业内首个中文原生的 DiT 架构文生图开源模型,支持中英文双语输入及理解,参数量 15 亿。

升级后的混元文生图大模型采用了与 Sora 一致的 DiT 架构,即全新的 Hunyuan-DiT 架构,不仅可以支持文生图,也可以作为视频等多模态视觉生成的基础。

107276cd686b556217aa3e70e6cf52cc.jpeg

为了全面比较 Hunyuan-DiT 与其他文生图模型的生成能力,腾讯混元团队构建 4 个维度的测试集,邀请超过 50 名专业评估人员进行评估,包括文本图像一致性、排除 AI 伪影、主题清晰度、审美。

从下表结果可以看到,采用 Hunyuan-DiT 架构的腾讯混元文生图模型效果远超开源的 Stable Diffusion 模型,是目前效果最好的开源文生图模型,整体能力属于国际领先水平。

b71839f33d682e709023903177126e03.png

与其他 SOTA 模型的比较。

与这些 SOTA 模型的定性比较结果如下图所示。

96bf46b2a95a66d87f5823fdc92f6877.png

4cf470b65479e5ee50a047cc62a5524c.png

48595740c633f625d637e3f809dd889b.png

全新 DiT 架构

腾讯混元文生图要做开源模型 No.1

大模型的优异表现,离不开领先的技术架构。

升级后的腾讯混元文生图大模型采用了全新的 DiT 架构(DiT 即 Diffusion With Transformer),这是 OpenAI Sora 和 Stable Diffusion 3 的同款架构和关键技术,是一种基于 Transformer 架构的扩散模型。

过去,视觉生成扩散模型主要基于 U-Net 架构,但随着参数量增加,基于 Transformer 架构的扩散模型展现了更好的扩展性,有助于进一步提升模型生成质量及效率。Sora 很好地说明了这一点。

腾讯混元是业界最早探索并应用大语言模型结合 DiT 结构的文生图模型之一。从 2023 年 7 月起,腾讯混元文生图团队就明确了基于 DiT 架构的模型方向,并启动了新一代模型研发。今年初,混元文生图大模型已全面升级为 DiT 架构。

Hunyuan-DiT 的模型结构如下图 7 所示,采用了创新的网络架构,结合了双语 CLIP 和多语言 T5 编码器,通过精心设计的数据管道进行训练和优化,支持多轮对话,能够根据上下文生成并完善图像。

4b7946f3027366e7236f90eea11c6a1a.png

在 DiT 架构之上,腾讯混元团队支持了中英双语文本提示生成图像,并在算法层面优化模型的长文本理解能力,能够支持最多 256 字符的内容输入,达到行业领先水平。

38ce5db697b47c020d064c72b8afc7c6.png

此外,混元文生图大模型在算法层面创新实现了多轮生图和对话能力,可实现在一张初始生成图片的基础上,通过自然语言描述进行调整,从而达到更满意的效果。

ea42b393919987ba8058f23f9ab51f97.gif

更多多轮对话生成示例如下图所示。

e1473020c945399710371eb5fe72d9fd.png

中文原生也是腾讯混元文生图大模型的一大亮点。此前,像 Stable Diffusion 等主流开源模型核心数据集以英文为主,对中国的语言、美食、文化、习俗都理解不够。

作为首个中文原生的 DiT 模型,混元文生图具备了中英文双语理解及生成能力,在古诗词、俚语、传统建筑、中华美食等中国元素的生成上表现出色。我们可以看以下一些生成示例。

cd3a0d2c882e13f13d9a43de93228586.png

腾讯混元文生图还更擅长细粒度文本提示生成

8865fabfea5828e5f8f0d45d95227b44.png

评测结果显示,新一代腾讯混元文生图大模型视觉生成整体效果,相比前代提升超过了 20%,不仅在语义理解、画面质感与真实性方面全面提升,而且在多轮对话、多主体、中国元素、真实人像生成等场景下效果提升显著。

这一次

腾讯混元选择全面开源文生图模型

腾讯混元文生图能力,已经广泛被用于素材创作、商品合成、游戏出图等多项业务及场景中。今年初,腾讯广告基于腾讯混元大模型,发布了一站式 AI 广告创意平台腾讯广告妙思,可为广告主提供文生图、图生图、商品背景合成等多场景创意工具,有效提高了广告生产及投放效率。

腾讯混元文生图大模型的开源,填补了中文原生 DiT 文生图架构的缺失,有助于更多的开发者和创作者参与进来,一起探索、共创基于 DiT 架构的视觉生成生态,更好地去验证、挖掘这个技术架构的潜力。

腾讯文生图负责人芦清林表示:「腾讯混元文生图的研发思路就是实用,坚持从实践中来,到实践中去。此次把最新一代模型完整开源出来,是希望与行业共享腾讯在文生图领域的实践经验和研究成果,丰富中文文生图开源生态,共建下一代视觉生成开源生态,推动大模型行业加速发展。」

基于腾讯开源的文生图模型,开发者及企业无需从头训练,即可以直接用于推理,并可基于混元文生图打造专属的 AI 绘画应用及服务,能够节约大量人力及算力。透明公开的算法,也让模型的安全性和可靠性得到保障。

此外,基于开放、前沿的混元文生图基础模型,也有利于在以 Stable Diffusion 等为主的英文开源社区之外,丰富以中文为主的文生图开源生态,形成更多样原生插件,推动中文文生图技术研发和应用。

关注公众号【机器学习与AI生成创作】,更多精彩等你来读

如何跟进 AIGC+CV 视觉前沿技术?

CVPR 2024 | diffusion扩散模型梳理!100+论文、40+方向!

ICCV 2023 | diffusion扩散模型方向!百篇论文

CVPR 2023 | 30个方向130篇!最全 AIGC 论文一口读完

深入浅出stable diffusion:AI作画技术背后的潜在扩散模型论文解读

深入浅出ControlNet,一种可控生成的AIGC绘画生成算法! 

经典GAN不得不读:StyleGAN

b11bb941e985cd04c68c943748b1a54d.png 戳我,查看GAN的系列专辑~!

最新最全100篇汇总!生成扩散模型Diffusion Models

ECCV2022 | 生成对抗网络GAN部分论文汇总

CVPR 2022 | 25+方向、最新50篇GAN论文

 ICCV 2021 | 35个主题GAN论文汇总

超110篇!CVPR 2021最全GAN论文梳理

超100篇!CVPR 2020最全GAN论文梳理

拆解组新的GAN:解耦表征MixNMatch

StarGAN第2版:多域多样性图像生成

附下载 | 《可解释的机器学习》中文版

附下载 |《TensorFlow 2.0 深度学习算法实战》

附下载 |《计算机视觉中的数学方法》分享

《基于深度学习的表面缺陷检测方法综述》

《零样本图像分类综述: 十年进展》

《基于深度神经网络的少样本学习综述》

《礼记·学记》有云:独学而无友,则孤陋而寡闻

点击跟进 AIGC+CV视觉 前沿技术,真香!,加入 AI生成创作与计算机视觉 知识星球!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值