数据赋能(130)——开发:数据标准化——技术方法、主要工具

技术方法 

数据标准化的技术方法主要包括以下几种:

  1. 数据归一化:
    1. 最小-最大归一化(Min-max标准化):将数据线性映射到指定的区间内,常用的归一化方法是将数据缩放到[0,1]之间。具体公式为:新数据=(原数据-最小值)/(最大值-最小值)。
    2. Z-score归一化(标准差标准化法):基于原始数据的均值和标准差进行数据的标准化。将数据转换为标准正态分布,即将数据缩放到均值为0,标准差为1的区间内。
  2. 极差标准化法:
    1. 消除变量量纲和变异范围影响最简单的方法。首先找出该指标的最大值和最小值,并计算极差,然后用该变量的每一个观察值减去最小值,再除以极差。具体公式为:X'=(X-Xmin)/(Xmax-Xmin)。
  3. 按小数定标标准化(虽未直接提及,但为常见的归一化方法):
    1. 通过移动数据的小数点位置来进行标准化。例如,将所有数据的小数点向左移动k位,使得数据落在一个特定的小数范围内。
主要工具

数据标准化的主要工具可以归纳为以下几类:

  1. 数据标准化工具:
    1. DataCleaner:一款强大的数据标准化工具,帮助用户将数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值