博弈问题(威佐夫博奕问题)之hdoj 取石子游戏 problem1527

110 篇文章 0 订阅
10 篇文章 0 订阅

取石子游戏

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3760    Accepted Submission(s): 1892


Problem Description
有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。
 

Input
输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,000。
 

Output
输出对应也有若干行,每行包含一个数字1或0,如果最后你是胜者,则为1,反之,则为0。
 

Sample Input
  
  
2 1 8 4 4 7
 

Sample Output
  
  
0 1 0
 

Source
/*

威佐夫博奕(Wythoff Game):

有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜.

(ak,bk)(ak ≤ bk ,k=0,1,2,...,n)表示奇异局势

        性质1:任何自然数都包含在一个且仅有一个奇异局势中。 
        性质2:任意操作都可将奇异局势变为非奇异局势。
        性质3:

一定存在规则允许的某种操作可将必胜点(非奇异)移动到必败点(奇异);

求法:

ak =[k(1+√5)/2], bk= ak + k (k=0,1,2,...,n 方括号表示取整函数)

       判断:

              Gold=(1+sqrt(5.0))/2.0;

1)假设(a,b)为第k种奇异局势(k=0,1,2...) 那么k=b-a;

2)判断其a==(int)(k*Gold),相等则为奇异局势

局势(Ak,Bk)   奇异局势特征:Ak =[k(1+√5)/2],Bk= Ak + k (k=0,1,2,...n 方括号表示取整函数)

结论:Bk - Ak = k;   if(Ak == [k * (1 + 

√5

) / 2])  ->奇异局势。

(注:采用适当的方法,可以将非奇异局势变为奇异局势.

假设面对的局势是(a,b)  若 b = a,则同时从两堆中取走 a 个物体,就变为了奇异局势(0,0);

1.       如果a = ak,

1.1   b > bk, 那么,取走b - bk个物体,即变为奇异局势(ak, bk);

1.2   b < bk 则同时从两堆中拿走 ak – a[b – ak]个物体,变为奇异局势( a[b – ak] , a[b – ak]+ b - ak);

2         如果a = bk ,

2.1   b > ak ,则从第二堆中拿走多余的数量b – ak

2.2   b < ak ,则 若b = aj (j < k) 从第一堆中拿走多余的数量a– bj; (a > bj)

若b = bj (j < k) 从第一堆中拿走多余的数量a– aj; ( a > aj)


*/
#include<cstdio>
#include<cstring>
#include<math.h>
#include<stdlib.h>
#include<algorithm>
using namespace std;
#define M ((sqrt(5.0)-1.0)/2.0)
#define W ((sqrt(5.0)+1.0)/2.0)


void swap(int &x,int &y)//位操作交换函数值的函数
{
x^=y;
y^=x;
x^=y;
}
int main()
{
int a,b;
while(~scanf("%d%d",&a,&b))

__int64 j,aj,ak;
 
if(a>b)
 swap(a,b);
 j=(__int64)a*M;
aj=(__int64)(j*W);
ak=(__int64)(W*(j+1));
if((aj==a&&b==a+j)||(ak==a&&b==a+(j+1)))

  printf("0\n");
  else
  printf("1\n");
     }
return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值