神经网络中前向传播和反向传播解析

本文介绍了深度学习中前向传播和反向传播的概念。前向传播通过加权和与激活函数计算每一层节点的输出,而反向传播利用梯度下降算法计算偏导数,减少误差,更新权重,以优化模型性能。
摘要由CSDN通过智能技术生成

虽然学深度学习有一段时间了,但是对于一些算法的具体实现还是模糊不清,用了很久也不是很了解,最近在看去年LeCun和Hinton在Nature上发表的deep learning的review,有两张图分别是讲得网络的前向传播和反向传播,下面记录一下。

前向传播

前向传播示意图
如图所示,这里讲得已经很清楚了,前向传播的思想比较简单。
举个例子,假设上一层结点i,j,k,…等一些结点与本层的结点w有连接,那么结点w的值怎么算呢?就是通过上一层的i,j,k等结点以及对应的连接权值进行加权和运算,最终结果再加上一个偏置项(图中为了简单省略了),最后在通过一个非线性函数(即激活函数),如ReLu,sigmoid等函数,最后得到的结果就是本层结点w的输出。
最终不断的通过这种方法一层层的运算,得到输出层结果。

反向传播

反向传播的方法其实也比较简单,但是因为需要求偏导,而我的数学又不怎么好,所以一直理解上有困难。下面上图:
反向传播示意图
由于我们前向传播最终得到的结果,以分类为例,最终总是有误差的,那么怎么减少误差呢,当前应用广泛的一个算法就是梯度下降算法,但是求梯度就要求偏导数,下面以图中字母为例讲解一下。
设最终总误差为 E ,对于输出那么 E #对于输出结点yl的偏导数是yl - tl,其中tl是真实值 ylzl 是指上面提到的激活函数,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值