[Python学习] Python+Opencv快速获取二值图像中物体的bounding box

本文介绍了如何在Python中利用OpenCV快速获取二值图像中物体的边界框(bounding box)及其黑色像素数量。传统遍历方法耗时,而文中提出的方法显著提升了效率,通过实验对比,效率提升可达上百倍。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[Python学习] Python+Opencv快速获取二值图像中物体的bounding box

问题

如图所示,如何快速获取图像中这条横线的bounding box的值,以及如何获取这条直线中所有黑色像素的数目呢?
在这里插入图片描述

解决方法

最简单的方法就是直接遍历图像中每个像素,判断每个像素是否为黑色,然后获取bounding box的值以及所有黑色像素的数目,但是这种方法非常耗时(C++与opencv搭档时可以使用指针快速的遍历,但是python这样做就很耗时),下面介绍一种更快的方法,以及实验对比

#coding=utf-8
import numpy as np
import cv2
import time

img = cv2.imread('test.png')
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
print img.shape

min_x = img.shape[0]
min_y = img.shape[1]
max_x = 0
max_y = 0

#像素挨个遍历
t1 = time.clock()
for i in range(img.shape[0]):
    for j in range(img.shape[1]):
        if img[i][j] < 255:
            if i < min_x:
                min_x = i
            if j < min_y:
                min_y = j
            if i > max_x:
                max_x = i
            if j > max_y:
                max_y = j
bbox_height1 = max_x - min_x
bbox_width1 = ma
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值