特征点匹配应用——图像拼接的原理与基于OpenCV的实现

本文介绍了图像拼接的原理与基于OpenCV的实现方法,包括特征点匹配、去除误匹配点对的RANSAC算法、图像的柱形投影预处理以及图像融合技术。在实践中,作者遇到并解决了ORB算法特征点聚集的问题,以及在处理透视矩阵和形变控制上的挑战。文章提供了一个简单的图像拼接结果示例。
摘要由CSDN通过智能技术生成

最初我看特征点匹配的东西源于三维重建,由于特征点匹配的不准确,导致两幅图像之间的位置关系计算不准确,从而使得最后生成的三维点云中有很多的噪声。看特征点匹配大概看了一个半月,把已有的除了最新的基于深度学习特征点匹配的方法都看了一个遍。后来三维重建没有再继续做下去,跟老师要了两周的时间想用特征点匹配试试图像拼接。
由于两周时间有点短,而且中间我的电脑还崩过三四天,最终也没有把图像拼接完全做通,我先把当前做好的记录下来,其余的再留个以后慢慢改善吧。
已做到的:多张有序图像之间的拼接、两幅图像交界处渐入渐出融合、图像的柱形投影;
未做到的:不同色调图像之间的拼接效果不理想、拼接处有虚影、最终图像的拉直。
好了,下面来简单介绍一下图像拼接的原理。

一、图像拼接原理

图像拼接在图像处理领域是一个比较成熟的方向了,目前都没有关于图像拼接的新论文出现了,他的主要组成分为两部分:(1)特征点匹配,确定两幅图像之间的位置关系;(2)把所有图像投影变换到同一坐标系,并完成对接与融合。下面来分别做简单的介绍。

1.1 特征点匹配

特征点匹配我就不多讲了,我的博文中有一个分类是讲比较经典的特征点匹配的方法的:特征点匹配 - lhanchao的博客
特征点匹配后,我们得到了两幅图像中相互匹配的特征点对,以及每个特征点对应的特征点描述符。然而我们得到特征点对中会有一部分是误匹配点,因此我们需要进行匹配点对的消除,一般我们使用的RANSAC去除误匹配点对,同样有博文介绍特征点匹配——使用基础矩阵、单应性矩阵的RANSAC算法去除误匹配点对,简单的来说,就是通过不断优化两幅图像之间的位置关系来验证特征点匹配点对是否正确。
从上面的描述中,我们可以发现一个很好的东西,就是我们用来去除误匹配的特征点对的矩阵,就是我们最终需要计算的两幅图像之间的位置关系,一石两鸟有没有~
注意,这里的矩阵指的是RANSAC博文中的单应性矩阵。我们在这里有个假设,即两幅图像之间是符合透视变换的,可以用如下方式表达:

xy1=m0m3m6m1m4m
评论 28
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值