lightoj1021 Painful Bases【数位dp】

传送门:lightoj 1021

题意:
t组数据,每组给定进制base(2<=k<=16)、正整数k(1<=k<=20)和一个合法base进制数n,n中不含重复数字,求n的全排列中能被k整除的数的个数。


数位dp, 注意状态表示和内存限制

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;

typedef long long LL;

int base, k;
LL dp[65536][21];
//第一维对应mod 表示前面位模k
//第二维对应st 表示剩余可用数字  二进制状态压缩
//本来应该有个第三维对应每个k,表示出所有状态,但内存有限,只能舍弃,每组数据刷新数组
LL dfs(int st, int mod)
{
    if(!st)
        return mod%k==0;
    if(dp[st][mod] != -1)
        return dp[st][mod];

    LL ans = 0;
    for(int i = 0; i < 16; i++)
        if(st & (1<<i))
            ans += dfs(st-(1<<i), (mod*base+i)%k);
    dp[st][mod] = ans;
    return ans;
}

LL sol(const char *s)
{
    int len = strlen(s);
    int st = 0;
    for(int i = 0; i < len; i++)
    {
        int k;
        if(s[i] >= '0' && s[i] <= '9')
            k = s[i] - '0';
        else
            k = s[i] - 'A' + 10;
        st |= 1 << k;
    }   
    memset(dp, -1, sizeof(dp));       //每次不同的k都得刷新
    return dfs(st, 0);
}

int main(int argc, char const *argv[])
{
    int t;
    scanf("%d", &t);
    for(int cas = 1; cas <= t; cas++)
    {
        char s[20];
        scanf("%d%d", &base, &k);
        scanf("%s", s);
        printf("Case %d: %lld\n", cas, sol(s));
    }
    return 0;
}
Sigma函数是指一个数字的所有因子之和。给定一个数字n,需要求出有多少个数字的Sigma函数是偶数。\[2\] 为了解决这个问题,可以先筛选出n范围内的素数(范围在10^6即可),然后对n进行素因子分解。对于每个因子,如果它的Sigma函数中连乘的每一项都是偶数,那么整个Sigma函数就是偶数。具体实现中,可以判断每个因子的平方根是否为偶数,如果是偶数,则减去(平方根+1)/2。\[1\] 另外,还可以使用O(1)的做法来解决这个问题。根据观察,所有的完全平方数及其两倍的值都会导致Sigma函数为偶数。因此,可以直接计算n的平方根,然后减去(平方根+1)/2即可得到结果。\[3\] #### 引用[.reference_title] - *1* [Sigma Function](https://blog.csdn.net/PNAN222/article/details/50938232)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [【LightOJ1336】Sigma Function(数论)](https://blog.csdn.net/qq_30974369/article/details/79009498)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值