传送门:lightoj 1021
题意:
t组数据,每组给定进制base(2<=k<=16)、正整数k(1<=k<=20)和一个合法base进制数n,n中不含重复数字,求n的全排列中能被k整除的数的个数。
数位dp, 注意状态表示和内存限制
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
typedef long long LL;
int base, k;
LL dp[65536][21];
//第一维对应mod 表示前面位模k
//第二维对应st 表示剩余可用数字 二进制状态压缩
//本来应该有个第三维对应每个k,表示出所有状态,但内存有限,只能舍弃,每组数据刷新数组
LL dfs(int st, int mod)
{
if(!st)
return mod%k==0;
if(dp[st][mod] != -1)
return dp[st][mod];
LL ans = 0;
for(int i = 0; i < 16; i++)
if(st & (1<<i))
ans += dfs(st-(1<<i), (mod*base+i)%k);
dp[st][mod] = ans;
return ans;
}
LL sol(const char *s)
{
int len = strlen(s);
int st = 0;
for(int i = 0; i < len; i++)
{
int k;
if(s[i] >= '0' && s[i] <= '9')
k = s[i] - '0';
else
k = s[i] - 'A' + 10;
st |= 1 << k;
}
memset(dp, -1, sizeof(dp)); //每次不同的k都得刷新
return dfs(st, 0);
}
int main(int argc, char const *argv[])
{
int t;
scanf("%d", &t);
for(int cas = 1; cas <= t; cas++)
{
char s[20];
scanf("%d%d", &base, &k);
scanf("%s", s);
printf("Case %d: %lld\n", cas, sol(s));
}
return 0;
}