最小生成树

版权声明: https://blog.csdn.net/lhhnb/article/details/80342995

最小生成树定义:

一个无向图,任意两个顶点都是联通的,并且是一个树,这棵树就叫生成树。如果边上有权值,使边的权值和最小的生成树叫做最小生成树。
求解最小生成树有两个算法,克鲁斯卡尔(Kruskal)算法和普利姆(Prim)算法。

注意:一个完整的最小生成树只需要顶点个数减一条边

先来讲克鲁斯卡尔:

把边的权值,从小到大查看一遍,如果不产生圈,就把当前边加入生成树中。
如何判断是否产生圈,假设要把连接顶点v和u的边e加入树种,如果u和v不在同一个连通分量里,那么加入e也不会产生圈。可用并查集判断两个顶点是否在一个连通分量里。复杂度O(E*log V) E是边的个数,V是顶点个数。

模板代码:

struct edge
{
    int u,v,cost;
};
bool cmp1(const edge &a,const edge &b)
{
    return a.cost<b.cost;
}
int par[MAX_N];
void init()
{
    for(int i=0;i<=n;i++)
        par[i]=i;
}
int find(int x)
{
    if(par[x]==x)
        return x;
    else
        return par[x]=find(par[x]);
}
int kr()
{
    sort(a,a+m,cmp1);
    init();
    int cns=0,res=0;
    for(int i=0;i<m;i++)
    {
        edge c=a[i];
        if(find(c.u)!=find(c.v))
        {
            par[find(c.u)]=find(c.v);
            res+=c.cost;
            if(maxx<c.cost)
            {
                maxx=c.cost;
                k=i;
            }
            cns++;
            if(cns>=n-1)
                break;
        }
    }
    return res;
}

普利姆

代码模板:

int prime()
{
    for(int i=1;i<=n;i++)
    {
        mincost[i]=INF;
        used[i]=false;
    }
    mincost[1]=0;
    int res=0;
    while(true)
    {
        int v=-1;
        for(int i=1;i<=n;i++)
        {
            if(!used[i]&&(v==-1||mincost[i]<mincost[v]))
                v=i;
        }
        if(v==-1) break;
        used[v]=true;
        res+=mincost[v];
        for(int i=1;i<=n;i++)
        {
            mincost[i]=min(mincost[i],cost[v][i]);
        }
    }
    return res;
}
阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页