lhh的博客

ACM路遥且艰

最小生成树

最小生成树定义:

一个无向图,任意两个顶点都是联通的,并且是一个树,这棵树就叫生成树。如果边上有权值,使边的权值和最小的生成树叫做最小生成树。
求解最小生成树有两个算法,克鲁斯卡尔(Kruskal)算法和普利姆(Prim)算法。

注意:一个完整的最小生成树只需要顶点个数减一条边

先来讲克鲁斯卡尔:

把边的权值,从小到大查看一遍,如果不产生圈,就把当前边加入生成树中。
如何判断是否产生圈,假设要把连接顶点v和u的边e加入树种,如果u和v不在同一个连通分量里,那么加入e也不会产生圈。可用并查集判断两个顶点是否在一个连通分量里。复杂度O(E*log V) E是边的个数,V是顶点个数。

模板代码:

struct edge
{
    int u,v,cost;
};
bool cmp1(const edge &a,const edge &b)
{
    return a.cost<b.cost;
}
int par[MAX_N];
void init()
{
    for(int i=0;i<=n;i++)
        par[i]=i;
}
int find(int x)
{
    if(par[x]==x)
        return x;
    else
        return par[x]=find(par[x]);
}
int kr()
{
    sort(a,a+m,cmp1);
    init();
    int cns=0,res=0;
    for(int i=0;i<m;i++)
    {
        edge c=a[i];
        if(find(c.u)!=find(c.v))
        {
            par[find(c.u)]=find(c.v);
            res+=c.cost;
            if(maxx<c.cost)
            {
                maxx=c.cost;
                k=i;
            }
            cns++;
            if(cns>=n-1)
                break;
        }
    }
    return res;
}

普利姆(待续。。。)

阅读更多
版权声明: https://blog.csdn.net/lhhnb/article/details/80342995
个人分类: ACM_最小生成树 ACM
想对作者说点什么? 我来说一句

最小生成树解决tsp问题

2014年04月06日 894KB 下载

没有更多推荐了,返回首页

不良信息举报

最小生成树

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭