SMO论文学习1

本文深入探讨1998年提出的Sequential Minimal Optimization(SMO)算法,这是一种用于训练支持向量机(SVM)的高效方法。SMO通过迭代优化策略,有效地解决拉格朗日乘子法的双变量优化问题,从而加速SVM的训练过程。
摘要由CSDN通过智能技术生成

Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines(1998)

Vladimir Vapnik invented Support Vector Machines in 1979 [19]. In its simplest, linear form, an
SVM is a hyperplane that separates a set of positive examples from a set of negative examples
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值