《机器学习技法》第八讲:Adaptive Boosting

第八讲:Adaptive  Boosting


1、Motivation of Boosting


aggregate weak hypotheses for strength
例子:在一个班级中老师教学生辨识苹果。老师通过放大辨识错的图片,使得学生在下一次辨识中更专注于上一次有错的地方。
学生:简单的g
班级:融合成复杂的G
老师:引导学生专注于犯过错的地方


2、Diversity by Re-weighting


Bootstrapping可以看出是重新加权的过程。
在bagging中每个不同g尝试最小化通过boostrap加权后的错误。


把权重u延伸到Base Algorithm里面
SVM中,相当于调整了upper bound C。
LR中,调整采样的权重。


模型差异越大,融合后表现越好。那么如何通过重新加权得到不一样的g呢?
idea:
(1)在权重u t下表现最好的模型g t
(2) 在权重 u t+1 下表现最好 的模型 g t+1
(3)调整 u t+1使得 g t表现不好,而 u t+1模型 g t+1 表现最好 ,那么 g tg t+1的差异就大了。


犯错/(犯错 +没犯错) = 1/2
错误的*正确的比例
正确的*错误的比例
这样原来的g t在新的一轮表现很差,就不会被base算法选中,这样和 g t+1 就有差异了。


3、Adaptive Boosting Algorithm


错误被放大,正确被缩小,从而得到不同的hypotheses。


初步的算法:
一开始g1的权重是一样的
得到众多个g如何融合成G:线性或非线性融合,不能平均融合,因为除了g1,其他g都是重新加权的,对Ein表现不好。



线性融合
思想: 好的g,a也要大。


AdaBoost算法
三个臭皮匠,顶个诸葛亮



AdaBoost的理论保证
AdaBoost是一个逐步做到boosting的算法


4、Adaptive Boosting in Action

AdaBoost需要搭配一个弱弱的演算法
decision stump模型


A simple Data Set


A Complicated Data Set


AdaBoost-Stump在人脸识别中的应用
把图片切分成很多细小的图片,看哪些细小的图片中有关键图案,把关键图案提供的信息通过AdaBoost整合起来。
选择特征或细小图片的过程



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值