在语音识别场景中,字符错误率(Character Error Rate,CER)是衡量语音识别效果的一个重要指标。下文将介绍CER的原理,并且给出python实现的代码。
1 编辑距离
说到CER,不得不提的是编辑距离(Edit Distance),它是一个用来衡量两个序列的相似度指标。
假设有两个字符串(a和b),编辑距离是指把字符串a修改成b(或者把b改成a)需要的最少编辑次数。编辑的操作只能有三种:
- 插入(Insertion)
- 删除(Deletion)
- 替换(Substitution)
比如,把cat修改成cafe可以这样编辑:
- cat --> caf(替换)
- caf --> cafe(插入)
也可以这样编辑:
- cat --> cate(插入)
- cate --> cafe(替换)
1.1 原理
将两个字符串a和b的编辑距离表示为 l e v a , b lev_{a,b} leva,b。之所以用 l e v lev lev,是因为编辑距离的作者叫Levenshtein,所以编辑距离也叫Levenshtein Distance。
用 l e v a , b ( i , j ) lev_{a,b}(i,j) leva,b(i,j)表示字符串a的前i个字符与b的前j个字符间的编辑距离,比如, l e v c a t , c a f e ( 2 , 3 ) lev_{cat,cafe}(2,3) levcat,cafe(2,3)就表示ca与caf之间编辑距离。
Levenshtein Distance的思路就是,要计算字符串之间的距离,先计算子串间的距离,要计算子串间的距离,先计算子子串间的距离,如此分解下去。用数学语言表示,就是下面这个公式
l e v a , b ( i , j ) = { m a x ( i , j ) if m i n ( i , j ) = 0 m i n { l e v a , b ( i − 1 , j ) + 1 l e v a , b ( i , j − 1 ) + 1 l e v a , b ( i − 1 , j − 1 ) + s i g n ( a i , b j ) if m i n ( i , j ) ≠ 0 lev_{a,b}(i,j)=\begin{cases} max(i,j) & \text{ if } min(i,j)=0 \\ min\begin{cases} lev_{a,b}(i-1,j)+1 \\ lev_{a,b}(i,j-1)+1 \\ lev_{a,b}(i-1,j-1)+sign(a_i,b_j) \end{cases} & \text{ if } min(i,j)\neq0 \end{cases} leva,b(i,j)=⎩⎪⎪⎪⎨⎪⎪⎪⎧max(i,j)min⎩⎪⎨⎪⎧leva,b(i−1,j)+1leva,b(i,j−1)+1leva,b(i−