Alternating Least Squares(ASL) for Implicit Feedback Datasets的数学推导以及用Python实现

本文详细介绍了针对隐式反馈数据集的交替最小二乘法(ASL)算法的数学推导,从目标函数出发,通过求导分析得出Xu和Yi的更新公式。此外,还提供了算法的Python实现,便于理解和应用协同过滤(CF)中的ASL方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在看CF的相关论文,《Collaborative Filtering for Implicit Feedback Datasets》思想很好,很容易理解,但是从目标函数
这里写图片描述
是如何推导出Xu和Yi的更新公式的推导过程却没有很好的描述,所以下面写一下
推导:
首先对Xu求导:
这里写图片描述
其中Y是item矩阵,n*f维,每一行是一个item_vec,C^u是n*n维的对角矩阵,
对角线上的每一个元素是c_ui,P(u)是n*1的列向量,它的第i个元素为p_ui。
然后令导数=0,可得:
这里写图片描述
由于x_u和y_i在目标函数中是对称的,所以很容易得到:
这里写图片描述
其中X是user矩阵,m*f维度,每一行是一个user_vec,C^i是m*m的对角矩阵,对角线上的每一个元素是c_ui,P(i)是m*1的列向量,它的第u和元素是p_ui
然后令导数=0,可得:
这里写图片描述
下面是论文算法思想的Python实现:

import numpy as np
import scipy.sparse as sparse
from scipy.sparse.linalg import spsolve
import time

def load_matrix(filename, num_users, num_items):
    t0 = time.time()
    counts = np.zeros((num_users, num_items))
   
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值