一、基本信息
论文题目:《Collaborative Filtering for Implicit Feedback Datasets》
发表时间:ICDM 2008
作者及单位:

论文地址:https://dl.acm.org/citation.cfm?id=1510528.1511352
二、摘要
推荐系统的一个共同任务是通过基于事先隐含反馈的个性化推荐来改善客户体验。这些系统被动地跟踪不同类型的用户行为,例如购买历史记录、观看习惯和浏览活动,以模拟用户偏好。与被更广泛研究的明确反馈不同,我们没有用户关于他们偏好的任何直接输入。特别是,我们缺乏消费者不喜欢哪些产品的充分证据。在这项工作中,我们确定了隐式反馈数据集的独特的适当联系。我们建议将这些数据视为积极和消极偏好的迹象,这些偏好与显著变化的信心水平有关。这导致了一个因素模型,特别是针对隐含反馈推荐。我们还建议一个可扩展的优化过程,它与数据大小成线性关系。该算法在电视节目推荐系统中得到了成功应用。它与其他已知方法的调优实现相比更为有利。此外,我们还提供了一种新的方法来解释这个因素模型给出的建议。
三、主要内容与工作
1、使用隐式反馈的几个特点:
- No negative feedback
- Implicit feedback is inherently noisy
- The numerical value of explicit feedback indicates preference, whereas the numeri

本文探讨了在推荐系统中处理隐式反馈数据的挑战,提出了将隐式反馈视为偏好和信心水平的估计,并介绍了一种线性可扩展的优化算法。这种方法在电视节目推荐系统中表现出色,允许解释推荐并处理隐式反馈的不确定性。研究还讨论了未来可能的改进方向,如引入时间变量和更细致的信心级别。
最低0.47元/天 解锁文章
2027

被折叠的 条评论
为什么被折叠?



