离散数学知识点(下)

快速幂

思想:反复平方法
求 a^k mod p,时间复杂度 O(logk)。

int qmi(int a, int k, int p)
	{
		int res = 1 % p, t = a;
		while (k)
		{
			if (k&1) res = (long long)res * t % p; //防止数值太大越界
			t = (long long)t * t % p;
			k >>= 1;
		}
		return res;
	}

扩展欧几里得定理

裴蜀定理: 有一对正整数a,b,那么一定存在非零整数x,y,使得ax+by=最大公约数(a,b);

// 求x, y,使得ax + by = gcd(a, b)
	int exgcd(int a, int b, int &x, int &y)
	{
		if (!b)
		{
			x = 1; y = 0;
			return a;
		}
		int d = exgcd(b, a % b, y, x);
		y -= (a/b) * x;
		return d;
	}

高斯消元法

// a[N][N]是增广矩阵
	int gauss()
	{
		int c, r;
		for (c = 0, r = 0; c < n; c ++ )
		{
			int t = r;
			for (int i = r; i < n; i ++ )   // 找到绝对值最大的行
				if (fabs(a[i][c]) > fabs(a[t][c]))
					t = i;

			if (fabs(a[t][c]) < eps) continue;

			for (int i = c; i <= n; i ++ ) swap(a[t][i], a[r][i]);      // 将绝对值最大的行换到最顶端
			for (int i = n; i >= c; i -- ) a[r][i] /= a[r][c];      // 将当前上的首位变成1
			for (int i = r + 1; i < n; i ++ )       // 用当前行将下面所有的列消成0
				if (fabs(a[i][c]) > eps)
					for (int j = n; j >= c; j -- )
						a[i][j] -= a[r][j] * a[i][c];

			r ++ ;
		}

		if (r < n)
		{
			for (int i = r; i < n; i ++ )
				if (fabs(a[i][n]) > eps)
					return 2; // 无解
			return 1; // 有无穷多组解
		}

		for (int i = n - 1; i >= 0; i -- )
			for (int j = i + 1; j < n; j ++ )
				a[i][n] -= a[i][j] * a[j][n];

		return 0; // 有唯一解
	}
	

求组合数

递推方法

10w组询问 0<a,b<2000 用递推的方法 O(n^2)

// c[a][b] 表示从a个苹果中选b个的方案数
   for (int i = 0; i < N; i ++ )
   	for (int j = 0; j <= i; j ++ )
   		if (!j) c[i][j] = 1;
   		else c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;

用预处理的方法 O(NlogN)

1w 组询问 1<b<a<10^5
首先预处理出所有阶乘取模的余数fact[N],以及所有阶乘取模的逆元infact[N]
如果取模的数是质数,可以用费马定理求逆元

int qmi(int a, int k, int p)    // 快速幂模板
	{
		int res = 1;
		while (k)
		{
			if (k & 1) res = (LL)res * a % p;
			a = (LL)a * a % p;
			k >>= 1;
		}
		return res;
	}

	// 预处理阶乘的余数和阶乘逆元的余数
	fact[0] = infact[0] = 1;
	for (int i = 1; i < N; i ++ )
	{
		fact[i] = (LL)fact[i - 1] * i % mod;
		infact[i] = (LL)infact[i - 1] * qmi(i, mod - 2, mod) % mod;
	}

lucas定理

20 组询问  1<b<a<10^18  
	lucas定理  o(plognlogp)
	若p是质数,则对于任意整数 1 <= m <= n,有:
    C(n, m) = C(n % p, m % p) * C(n / p, m / p) (mod p)
	int qmi(int a, int k)       // 快速幂模板
	{
		int res = 1;
		while (k)
		{
			if (k & 1) res = (LL)res * a % p;
			a = (LL)a * a % p;
			k >>= 1;
		}
		return res;
	}


	int C(int a, int b)     // 通过定理求组合数C(a, b)
	{
		int res = 1;
		for (int i = 1, j = a; i <= b; i ++, j -- )
		{
			res = (LL)res * j % p;
			res = (LL)res * qmi(i, p - 2) % p;
		}
		return res;
	}


	int lucas(LL a, LL b)
	{
		if (a < p && b < p) return C(a, b);
		return (LL)C(a % p, b % p) * lucas(a / p, b / p) % p;
	}

直接求组合数,组合数很大,不能磨

当我们需要求出组合数的真实值,而非对某个数的余数时,分解质因数的方式比较好用:
    1. 筛法求出范围内的所有质数
    2. 通过 C(a, b) = a! / b! / (a - b)! 这个公式求出每个质因子的次数。 n! 中p的次数是 n / p + n / p^2 + n / p^3 + ...
    3. 用高精度乘法将所有质因子相乘
	int primes[N], cnt;     // 存储所有质数
	int sum[N];     // 存储每个质数的次数
	bool st[N];     // 存储每个数是否已被筛掉
	void get_primes(int n)      // 线性筛法求素数
	{
		for (int i = 2; i <= n; i ++ )
		{
			if (!st[i]) primes[cnt ++ ] = i;
			for (int j = 0; primes[j] <= n / i; j ++ )
			{
				st[primes[j] * i] = true;
				if (i % primes[j] == 0) break;
			}
		}
	}

	int get(int n, int p)       // 求n!中的次数
	{
		int res = 0;
		while (n)
		{
			res += n / p;
			n /= p;
		}
		return res;
	}

	vector<int> mul(vector<int> a, int b)       // 高精度乘低精度模板
	{
		vector<int> c;
		int t = 0;
		for (int i = 0; i < a.size(); i ++ )
		{
			t += a[i] * b;
			c.push_back(t % 10);
			t /= 10;
		}

		while (t)
		{
			c.push_back(t % 10);
			t /= 10;
		}

		return c;
	}

	get_primes(a);  // 预处理范围内的所有质数

	for (int i = 0; i < cnt; i ++ )     // 求每个质因数的次数
	{
		int p = primes[i];
		sum[i] = get(a, p) - get(b, p) - get(a - b, p);
	}

	vector<int> res;

	for (int i = 0; i < cnt; i ++ )     // 用高精度乘法将所有质因子相乘
		for (int j = 0; j < sum[i]; j ++ )
			res = mul(res, primes[i]);

卡特兰数

给定n个0和n个1,它们按照某种顺序排成长度为2n的序列,满足任意前缀中0的个数都不少于1的个数的序列的数量为:

Cat(n) = C(2n, n) / (n + 1)

容斥原理

同上面的公式一样:
	-------------------------容斥原理----------------------------
	|假如我们要去除1-n中 p1,p2,p3,p4,p5....的倍数				|
	|那么有多少个呢?N-N/p1-N/p2-N/p3....N/pk;这里面有多去的部分|
	|加上所有pi*pj的倍数  +N/(Pi*pj)+...						|
	|减去所有pi*pj*pk的倍数 									|
	-------------------------------------------------------------
	我们现在只是分析一下这个复杂度,首先就是有多少中可能
	S1 U S2 U S3 =(S1+S2+S3)-S1∩S2-S2∩S3-S1∩S3+S1∩S2∩S3
	也就是S1、S2、S3中选1个,选2个,选3个组合在一起,也就是在3个中选择任意多个的可能性组合
	那么再抽象就是S1 S2 S3分别选和不选 也就是2^n-1 种选择的可能性;
	那么一般可以用移位操作来表示选和不选:1-(2^3-1) 也就是 001+010+100-011-101-110+111 这几种选择
	我们就以通过"位"来表示这几种容斥的情况,其中我们在操作的时候还要记下1个数,1为奇数为+1为偶数则为-------

Nim游戏

简单的Nim游戏就是看我们的选择的情况为任意多个还是限定的个
	如果是任意多个那么其实我们的sg(n)=n;
	所以我们的sg(n1)^sg(n2)^sg(n3)^sg(n4)^sg(n5)^sg(n6)=n1^n2^n3^n4^n5^n6;
	那么结论就是:sg(n1)^sg(n2)^sg(n3)^sg(n4)^sg(n5)^sg(n6)>0 先手的那么我们就必赢
				  sg(n1)^sg(n2)^sg(n3)^sg(n4)^sg(n5)^sg(n6)=0 先手的那么我们就必输
	
	那么结果是怎样证明的呢?
	我们直接用n1^n2^n3^n4^n5^n6操作而不用sg(),实际上我们应该用sg来操作;
	假设:n1^n2^n3^n4^n5^n6=x 为必胜态,那么先手的我就一定能转换成必输态
		  x的最高位有一个1,假设我们是n6赋予他的;那么n6^x<x;
		  所以我们就可以把n6改变成n6^x;(变成比自己小的没有问题吧)因为我们sg(n)代表的就是最小的一个不在可能集合里面的数;
		那么n1^n2^n3^n4^n5^n6^x=x^x=0; 那么就转换成为必输态;
			相同必输态只要操作,就会变为必赢态。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值