基本模型及解释
分位数回归经典模型是由Koenker和Bassett (1978b)引入的,它从位置模型中的普通分位数(也称为“百分位数”)的概念扩展到更一般的一类线性模型,其中条件分位数具有线性形式。为了简单地回忆一下普通分位数,考虑一个实数随机变量Y,其特征如下分布函数
则对于任意τ∈(0,1),Y的τ -th分位数定义如下:
中位数是Q(1/2),第一个四分位数是Q(1/4),第一个十分位数是Q(1/10)。分位数函数提供了Y的完整表征,就像分布函数f一样。分位数可以写成以下优化问题的解:对于任意τ∈(0,1),定义分段线性的“检验函数”
其中I(.)是常用的指示函数。最小化问题的解是
Q(τ)的样本模拟是基于一个随机样本{y1,…, n} (Y)。然后,根据上述(4)的精神,可以将τ -th分位数识别为以下问题的任何解: