分位数回归的基本原理和特点

基本模型及解释

分位数回归经典模型是由Koenker和Bassett (1978b)引入的,它从位置模型中的普通分位数(也称为“百分位数”)的概念扩展到更一般的一类线性模型,其中条件分位数具有线性形式。为了简单地回忆一下普通分位数,考虑一个实数随机变量Y,其特征如下分布函数
在这里插入图片描述
则对于任意τ∈(0,1),Y的τ -th分位数定义如下:
在这里插入图片描述
中位数是Q(1/2),第一个四分位数是Q(1/4),第一个十分位数是Q(1/10)。分位数函数提供了Y的完整表征,就像分布函数f一样。分位数可以写成以下优化问题的解:对于任意τ∈(0,1),定义分段线性的“检验函数”
在这里插入图片描述
其中I(.)是常用的指示函数。最小化问题的解是
在这里插入图片描述
Q(τ)的样本模拟是基于一个随机样本{y1,…, n} (Y)。然后,根据上述(4)的精神,可以将τ -th分位数识别为以下问题的任何解:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值