方法一 (label 中有NaN值)
这种方式是为了防止label里面有NaN值,但没考虑是否为零值。这里以pytorch进行举例。
def masked_mape(preds, labels, null_val=np.nan):
if np.isnan(null_val):
mask = ~torch.isnan(labels)
else:
mask = (labels!=null_val)
mask = mask.float()
mask /= torch.mean((mask))
mask = torch.where(torch.isnan(mask), torch.zeros_like(mask), mask)
loss = torch.abs((preds-labels)/labels)
loss = loss * mask
loss = torch.where(torch.isnan(loss), torch.zeros_like(loss), loss)
return torch.mean(loss)
方法二(label 中有零值)
这种方式考虑了分母是否为零值,默认label不为Nan(提前保证,或者使用sklearn.utils.validation里面的cheak_array()函数来检查)。
def mape_loss_func(preds,labels):
mask=labels!=0
return np.fabs((labels[mask]-preds[mask])/labels[mask]).mean()
方法三 (限制过大过小值)
这种方式是推荐的,因为分母太小,会导致mape太大,所以,把它限定住,非常合适。如果需要,也可以对预测值进行一定的限制。
(下面的方法以label和预测值都在0-1之间进行举例)
def mape_loss_func2(preds,labels):
return np.fabs((label-pred)/np.clip(label,0.1,1)).mean()