论文:Multi-Head Encoding for Extreme Label Classification
作者:Daojun Liang, Haixia Zhang, Dongfeng Yuan and Minggao Zhang
单位:山东大学
代码:https://github.com/Anoise/MHE
背景动机参见 【顶刊TPAMI 2025】多头编码(MHE)之极限分类 Part 1
基础知识参见 【顶刊TPAMI 2025】多头编码(MHE)之极限分类 Part 2
算法实现参见 【顶刊TPAMI 2025】多头编码(MHE)之极限分类 Part 3
表示能力参见 【顶刊TPAMI 2025】多头编码(MHE)之极限分类 Part 4
实验结果参见 【顶刊TPAMI 2025】多头编码(MHE)之极限分类 Part 5
无需预处理见 【顶刊TPAMI 2025】多头编码(MHE)之极限分类 Part 6
请各位同学给我点赞,激励我创作更好、更多、更优质的内容!^_^
关注微信公众号,获取更多资讯
1 标签分解方法的消融研究
为了进一步验证定理3中隐含的结论,即当模型泛化与数据过度拟合时,模型泛化变得与标签的语义无关,本文对模型泛化进行标签分解的消融研究。众所周知,预处理技术的核心是对极端标签进行语义聚类,将其划分为多个易于处理的局部标签。因此,本文将使用标签聚类(LC)的模型与使用标签随机重排和任意分解(LRD)的模型的性能进行比较。
图8:XLC中标签分解预处理(a)与未预处理(b)的比较。 F F F是从模型中提取的特征。 C i C_i