We have two integer sequences A and B of the same non-zero length.
We are allowed to swap elements A[i] and B[i]. Note that both elements are in the same index position in their respective sequences.
At the end of some number of swaps, A and B are both strictly increasing. (A sequence is strictly increasing if and only if A[0] < A[1] < A[2] < ... < A[A.length - 1].)
Given A and B, return the minimum number of swaps to make both sequences strictly increasing. It is guaranteed that the given input always makes it possible.
Example:
Input: A = [1,3,5,4], B = [1,2,3,7]
Output: 1
Explanation:
Swap A[3] and B[3]. Then the sequences are:
A = [1, 3, 5, 7] and B = [1, 2, 3, 4]
which are both strictly increasing.
Note:
A, B are arrays with the same length, and that length will be in the range [1, 1000].
A[i], B[i] are integer values in the range [0, 2000].
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-swaps-to-make-sequences-increasing
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
class Solution {
public int minSwap(int[] A, int[] B) {
int swap[] = new int[A.length];
int noSwap[] = new int[B.length];
Arrays.fill(swap, Integer.MAX_VALUE);
Arrays.fill(noSwap, Integer.MAX_VALUE);
swap[0] = 1;
noSwap[0] = 0;
for (int i = 1; i < A.length; i++) {
if (A[i] > A[i - 1] && B[i] > B[i - 1]) {
// 如果一定要换的话,swap[i] = swap[i - 1] + 1;
swap[i] = swap[i - 1] + 1;
noSwap[i] = noSwap[i - 1];
}
if (A[i] > B[i - 1] && B[i] > A[i - 1]) {
// 可以换,上一个不换的noSwap[i - 1],+ 1
swap[i] = Math.min(swap[i], noSwap[i - 1] + 1);
// 上一个换完的swap[i - 1]满足要求。
noSwap[i] = Math.min(noSwap[i], swap[i - 1]);
}
}
return Math.min(swap[A.length - 1], noSwap[A.length - 1]);
}
}