801. Minimum Swaps To Make Sequences Increasing

We have two integer sequences A and B of the same non-zero length.

We are allowed to swap elements A[i] and B[i].  Note that both elements are in the same index position in their respective sequences.

At the end of some number of swaps, A and B are both strictly increasing.  (A sequence is strictly increasing if and only if A[0] < A[1] < A[2] < ... < A[A.length - 1].)

Given A and B, return the minimum number of swaps to make both sequences strictly increasing.  It is guaranteed that the given input always makes it possible.

Example:
Input: A = [1,3,5,4], B = [1,2,3,7]
Output: 1
Explanation: 
Swap A[3] and B[3].  Then the sequences are:
A = [1, 3, 5, 7] and B = [1, 2, 3, 4]
which are both strictly increasing.
Note:

A, B are arrays with the same length, and that length will be in the range [1, 1000].
A[i], B[i] are integer values in the range [0, 2000].

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-swaps-to-make-sequences-increasing
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

 

class Solution {
    public int minSwap(int[] A, int[] B) {
        int swap[] = new int[A.length];
        int noSwap[] = new int[B.length];
        Arrays.fill(swap, Integer.MAX_VALUE);
        Arrays.fill(noSwap, Integer.MAX_VALUE);
        swap[0] = 1;
        noSwap[0] = 0;
        for (int i = 1; i < A.length; i++) {
            if (A[i] > A[i - 1] && B[i] > B[i - 1]) {
                // 如果一定要换的话,swap[i] = swap[i - 1] + 1;
                swap[i] = swap[i - 1] + 1;
                noSwap[i] = noSwap[i - 1];
            }
            if (A[i] > B[i - 1] && B[i] > A[i - 1]) {
                // 可以换,上一个不换的noSwap[i - 1],+ 1
                swap[i] = Math.min(swap[i], noSwap[i - 1] + 1);
                // 上一个换完的swap[i - 1]满足要求。
                noSwap[i] = Math.min(noSwap[i], swap[i - 1]);
            }
        }
        return Math.min(swap[A.length - 1], noSwap[A.length - 1]);
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值