Minimum Swaps To Make Sequences Increasing

We have two integer sequences A and B of the same non-zero length.

We are allowed to swap elements A[i] and B[i].  Note that both elements are in the same index position in their respective sequences.

At the end of some number of swaps, A and B are both strictly increasing.  (A sequence is strictly increasing if and only if A[0] < A[1] < A[2] < ... < A[A.length - 1].)

Given A and B, return the minimum number of swaps to make both sequences strictly increasing.  It is guaranteed that the given input always makes it possible.

Example:
Input: A = [1,3,5,4], B = [1,2,3,7]
Output: 1
Explanation:
Swap A[3] and B[3].  Then the sequences are:
A = [1, 3, 5, 7] and B = [1, 2, 3, 4]
which are both strictly increasing.


Note:

• A, B are arrays with the same length, and that length will be in the range [1, 1000].
• A[i], B[i] are integer values in the range [0, 2000].

dp[i][0] = min(dp[i][0], dp[i - 1][0]);

dp[i][1] = min(dp[i][1], dp[i - 1][0] + 1);

dp[i][0] = min(dp[i][0], dp[i - 1][1]);

dp[i][1] = min(dp[i][1], dp[i - 1][1] + 1);

class Solution {
public int minSwap(int[] A, int[] B) {
int lena = A.length, lenb = B.length;
int[][] record = new int[lena][2];
for(int[] it : record)
Arrays.fill(it, lena);
record[0][0] = 0;
record[0][1] = 1;
for(int i = 1; i < lena; i++){
if(record[i - 1][0] < lena && A[i] > A[i - 1] && B[i] > B[i - 1]){
record[i][0] = Math.min(record[i][0], record[i - 1][0]);
}
if(record[i - 1][0] < lena && B[i] > A[i - 1] && A[i] > B[i - 1]){
record[i][1] = Math.min(record[i][1], record[i - 1][0] + 1);
}
if(record[i - 1][1] < lena && A[i] > B[i - 1] && B[i] > A[i - 1]){
record[i][0] = Math.min(record[i][0], record[i - 1][1]);
}
if(record[i - 1][1] < lena && B[i] > B[i - 1] && A[i] > A[i - 1]){
record[i][1] = Math.min(record[i][1], record[i - 1][1] + 1);
}
}
return Math.min(record[lena - 1][0], record[lena - 1][1]);
}
}