Minimum Swaps To Make Sequences Increasing

We have two integer sequences A and B of the same non-zero length.

We are allowed to swap elements A[i] and B[i].  Note that both elements are in the same index position in their respective sequences.

At the end of some number of swaps, A and B are both strictly increasing.  (A sequence is strictly increasing if and only if A[0] < A[1] < A[2] < ... < A[A.length - 1].)

Given A and B, return the minimum number of swaps to make both sequences strictly increasing.  It is guaranteed that the given input always makes it possible.

Example:
Input: A = [1,3,5,4], B = [1,2,3,7]
Output: 1
Explanation: 
Swap A[3] and B[3].  Then the sequences are:
A = [1, 3, 5, 7] and B = [1, 2, 3, 4]
which are both strictly increasing.

Note:

  • A, B are arrays with the same length, and that length will be in the range [1, 1000].
  • A[i], B[i] are integer values in the range [0, 2000].

题目描述:有两个数组,可以交换两个数组中位置相同的元素的值,问,最少经过几次交换,可以使得两个数组都是严格递增。题目保证用例一定有解。

结题思路:动态规划,dp[i][0]保存位置i不交换时的保证两个数组0~i的元素递增的最少交换次数,如果不可能,则即为无限大;dp[i][1]保存位置i交换时,保证两个数组0~i的元素递增的最少交换次数;当考虑i+1位置时,我们已经不用考虑i之前的位置了,因为dp[i]中已经包含了这些信息,因此递推公式如下:

如果位置i不交换位置,且位置i+1不交换位置,并且能够保证两个数组都严格递增:

dp[i][0] = min(dp[i][0], dp[i - 1][0]);

如果位置i不交换位置,且位置i+1交换位置,并且能够保证两个数组都严格递增:

dp[i][1] = min(dp[i][1], dp[i - 1][0] + 1);

如果位置i交换位置,且位置i+1不交换位置,并且能够保证两个数组都严格递增:

dp[i][0] = min(dp[i][0], dp[i - 1][1]);

如果位置i交换位置,且位置i+1交换位置,并且能够保证两个数组都严格递增:

dp[i][1] = min(dp[i][1], dp[i - 1][1] + 1);

代码如下:

class Solution {
    public int minSwap(int[] A, int[] B) {
        int lena = A.length, lenb = B.length;
        int[][] record = new int[lena][2];
        for(int[] it : record)
        	Arrays.fill(it, lena);
        record[0][0] = 0;
        record[0][1] = 1;
        for(int i = 1; i < lena; i++){
        	if(record[i - 1][0] < lena && A[i] > A[i - 1] && B[i] > B[i - 1]){
        		record[i][0] = Math.min(record[i][0], record[i - 1][0]);
        	}
        	if(record[i - 1][0] < lena && B[i] > A[i - 1] && A[i] > B[i - 1]){
        		record[i][1] = Math.min(record[i][1], record[i - 1][0] + 1);
        	}
        	if(record[i - 1][1] < lena && A[i] > B[i - 1] && B[i] > A[i - 1]){
        		record[i][0] = Math.min(record[i][0], record[i - 1][1]);
        	}
        	if(record[i - 1][1] < lena && B[i] > B[i - 1] && A[i] > A[i - 1]){
        		record[i][1] = Math.min(record[i][1], record[i - 1][1] + 1);
        	}
        }
        return Math.min(record[lena - 1][0], record[lena - 1][1]);
    }
}


阅读更多
文章标签: LeetCode
个人分类: LeetCode
上一篇Student Attendance Record II
下一篇Prime Number of Set Bits in Binary Representation
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭