We have two integer sequences A
and B
of the same non-zero length.
We are allowed to swap elements A[i]
and B[i]
. Note that both elements are in the same index position in their respective sequences.
At the end of some number of swaps, A
and B
are both strictly increasing. (A sequence is strictly increasing if and only if A[0] < A[1] < A[2] < ... < A[A.length - 1]
.)
Given A and B, return the minimum number of swaps to make both sequences strictly increasing. It is guaranteed that the given input always makes it possible.
Example: Input: A = [1,3,5,4], B = [1,2,3,7] Output: 1 Explanation: Swap A[3] and B[3]. Then the sequences are: A = [1, 3, 5, 7] and B = [1, 2, 3, 4] which are both strictly increasing.
Note:
A, B
are arrays with the same length, and that length will be in the range[1, 1000]
.A[i], B[i]
are integer values in the range[0, 2000]
.
题目描述:有两个数组,可以交换两个数组中位置相同的元素的值,问,最少经过几次交换,可以使得两个数组都是严格递增。题目保证用例一定有解。
结题思路:动态规划,dp[i][0]保存位置i不交换时的保证两个数组0~i的元素递增的最少交换次数,如果不可能,则即为无限大;dp[i][1]保存位置i交换时,保证两个数组0~i的元素递增的最少交换次数;当考虑i+1位置时,我们已经不用考虑i之前的位置了,因为dp[i]中已经包含了这些信息,因此递推公式如下:
如果位置i不交换位置,且位置i+1不交换位置,并且能够保证两个数组都严格递增:
dp[i][0] = min(dp[i][0], dp[i - 1][0]);
如果位置i不交换位置,且位置i+1交换位置,并且能够保证两个数组都严格递增:
dp[i][1] = min(dp[i][1], dp[i - 1][0] + 1);
如果位置i交换位置,且位置i+1不交换位置,并且能够保证两个数组都严格递增:
dp[i][0] = min(dp[i][0], dp[i - 1][1]);
如果位置i交换位置,且位置i+1交换位置,并且能够保证两个数组都严格递增:
dp[i][1] = min(dp[i][1], dp[i - 1][1] + 1);
代码如下:
class Solution {
public int minSwap(int[] A, int[] B) {
int lena = A.length, lenb = B.length;
int[][] record = new int[lena][2];
for(int[] it : record)
Arrays.fill(it, lena);
record[0][0] = 0;
record[0][1] = 1;
for(int i = 1; i < lena; i++){
if(record[i - 1][0] < lena && A[i] > A[i - 1] && B[i] > B[i - 1]){
record[i][0] = Math.min(record[i][0], record[i - 1][0]);
}
if(record[i - 1][0] < lena && B[i] > A[i - 1] && A[i] > B[i - 1]){
record[i][1] = Math.min(record[i][1], record[i - 1][0] + 1);
}
if(record[i - 1][1] < lena && A[i] > B[i - 1] && B[i] > A[i - 1]){
record[i][0] = Math.min(record[i][0], record[i - 1][1]);
}
if(record[i - 1][1] < lena && B[i] > B[i - 1] && A[i] > A[i - 1]){
record[i][1] = Math.min(record[i][1], record[i - 1][1] + 1);
}
}
return Math.min(record[lena - 1][0], record[lena - 1][1]);
}
}