点积的几何表示为: a ⋅ b = ∣ a ∣ ∣ b ∣ cos θ a \cdot b = |a||b|\cos\theta a⋅b=∣a∣∣b∣cosθ,向量表示为: a ⋅ b = a T b a \cdot b = a^Tb a⋅b=aTb
所以:
a
⋅
b
=
a
T
b
=
∣
a
∣
∣
b
∣
cos
θ
a\cdot b=a^Tb=|a||b|\cos\theta
a⋅b=aTb=∣a∣∣b∣cosθ
设
c
=
a
−
b
c = a - b
c=a−b,于是有
c
2
=
(
a
−
b
)
2
=
(
a
−
b
)
T
(
a
−
b
)
=
(
a
T
−
b
T
)
(
a
−
b
)
=
a
T
a
+
b
T
b
−
2
a
T
b
=
a
2
+
b
2
−
2
a
⋅
b
=
a
2
+
b
2
−
2
∣
a
∣
∣
b
∣
c
o
s
θ
\begin{aligned} c^2& = (a-b)^2 \\&=(a-b)^T(a-b) \\&=(a^T-b^T)(a-b) \\&=a^Ta+b^Tb-2a^Tb \\&=a^2+b^2-2a\cdot b \\&=a^2+b^2-2|a||b|cos\theta \end{aligned}
c2=(a−b)2=(a−b)T(a−b)=(aT−bT)(a−b)=aTa+bTb−2aTb=a2+b2−2a⋅b=a2+b2−2∣a∣∣b∣cosθ
这就是余弦定理