当 Ax=b 无解时,如何处理

当线性方程组Ax=b无解时,可通过左乘ATA得到新的方程组ATAx^=ATb,并求解x^作为Ax=b的最优解。此过程涉及矩阵A的映射矩阵P,通过Ax^=Pb求得x^。证明了ATA是一个可逆矩阵,确保ATAx^=ATb有解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A x = b Ax=b Ax=b 无解时,可以在左右两边同时左乘 A T A^T AT 得到 A T A x ^ = A T b A^TA\hat{x}=A^Tb ATAx^=ATb,然后求解 x ^ \hat{x} x^ 即为 A x = b Ax=b Ax=b 的最优解。

证明:矩阵 A的映射矩阵 P = A ( A T A ) − 1 A T P=A(A^TA)^{-1}A^T P=A(ATA)1AT,所以 b b b 在 A的列空间 C ( A ) C(A) C(A) 的映射为 p = P b p=Pb p=Pb, 所以通过 A x ^ = P b A\hat{x}=Pb Ax^=Pb 求得的 x ^ \hat{x} x^ 便是 A x = b Ax=b Ax=b 的最优解。

A x ^ = P b = A ( A T A ) − 1 A T b A\hat{x}=Pb = A(A^TA)^{-1}A^Tb Ax^=Pb=A(ATA)1ATb 左右两边同时左乘 A T A^T AT

得到 A T A x ^ = A T A ( A T A ) − 1 A T b = ( A T A ) ( A T A ) − 1 A T b = A T b A^{T}A\hat{x} = A^TA(A^TA)^{-1}A^Tb = (A^TA)(A^TA)^{-1}A^Tb = A^Tb ATAx^=ATA(ATA)1ATb=(ATA)(ATA)1ATb=ATb

有因为

A T A ( A T A ) − 1 = A T A A − 1 ( A T ) − 1 = A T I ( A T ) − 1 = I A^TA(A^TA)^{-1}=A^TAA^{-1}(A^T)^{-1}=A^TI(A^T)^{-1}=I ATA(ATA)1=ATAA1(AT)1=ATI(AT)1=I

A − 1 ( A T ) − 1 A T A = A − 1 I A = I A^{-1}(A^T)^{-1}A^TA=A^{-1}IA=I A1(AT)1ATA=A1IA=I

所以 A T A A^TA ATA 是一个可逆矩阵,所以 A T A x ^ = A T b A^TA\hat{x}=A^Tb ATAx^=ATb 有解。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值