# Sigmoid 函数的求导过程

Sigmoid 函数的公式如下：

σ ( x ) = 1 1 + e − x \sigma(x) = \frac{1}{1 + e^{-x}}

σ : x → − x → e − x → 1 + e − x → ( 1 + e − x ) − 1 \sigma : x\rightarrow-x \rightarrow e^{-x} \rightarrow 1 + e^{-x} \rightarrow (1+e^{-x})^{-1}

f : x → − x f : x\rightarrow -x
g : f → e f g : f\rightarrow e^{f}
h : g → 1 + g h : g\rightarrow 1 + g
σ : h → h − 1 \sigma: h\rightarrow h^{-1}

σ ( x ) = h ∘ g ∘ f ( x ) \sigma(x) = h \circ g \circ f(x)

∂ σ ∂ x = ∂ σ ∂ h ∂ h ∂ g ∂ g ∂ f ∂ f ∂ x \frac{\partial{\sigma}}{\partial{x}} = \frac{\partial{\sigma}}{\partial{h}}\frac{\partial{h}}{\partial{g}}\frac{\partial{g}}{\partial{f}}\frac{\partial{f}}{\partial{x}}

∂ σ ∂ h = − h − 2 \frac{\partial{\sigma}}{\partial{h}} = -h^{-2}
∂ h ∂ g = 1 \frac{\partial{h}}{\partial{g}} = 1
∂ g ∂ f = e f \frac{\partial{g}}{\partial{f}} = e^{f}
∂ f ∂ x = − 1 \frac{\partial{f}}{\partial{x}} = -1

∂ σ ∂ x = − h − 2 ⋅ 1 ⋅ e f ⋅ ( − 1 ) \frac{\partial{\sigma}}{\partial{x}} =-h^{-2}\cdot1\cdot e^{f}\cdot(-1)

h = 1 + e − x h = 1+e^{-x}
f = − x f=-x

∂ σ ∂ x = σ ( x ) ⋅ ( 1 − σ ( x ) ) \frac{\partial{\sigma}}{\partial{x}}=\sigma{(x)}\cdot(1-\sigma{(x)})

07-18 8万+

04-23 3880
08-29 3万+
09-23 1166
04-10 8349
08-26 791
03-17 3802
10-09 210
01-08 2万+
07-22 8613
07-17 95
07-12 643
06-07 1万+
07-19 67
05-02 1056
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客