线性代数
线性代数相关知识点
Linky1990
这个作者很懒,什么都没留下…
展开
-
线性代数 标量、向量、矩阵之间的求导
函数标量 fff函数向量(函数组成的向量) yyy函数矩阵(函数组成的矩阵) YYY标量 x正切向量向量 xxx梯度向量Jacobian 矩阵矩阵 XXX一、标量 fff 关于 标量 x 的导数dfdx\frac{\mathbb{d}f}{\mathbb{dx}}dxdf二、向量 yyy 关于 标量 x 的导数∂y∂x=[∂...原创 2020-04-15 15:33:47 · 428 阅读 · 0 评论 -
MIT 线性代数习题
0、线性代数中的几何学Solve2x+y=3x−2y=−1\begin{aligned}2x + y &= 3 \\x -2y &=-1\end{aligned}2x+yx−2y=3=−1and find out is “row picture” and “column picture”1、核心思想概述Suppose AAA is a matrix su...原创 2020-04-14 20:48:37 · 3538 阅读 · 0 评论 -
关于用 numpy 计算矩阵特征向量的问题
设 A=[0.90.20.10.8]A = \begin{bmatrix} 0.9 & 0.2 \\ 0.1 & 0.8 \end{bmatrix}A=[0.90.10.20.8]则 A 的特征值 λ1=1\lambda_1 = 1λ1=1,由Ax1=λ1x1=x1Ax_1=\lambda_1x_1=x_1Ax1=λ1x1=x1 得到 x1=[21]x_1=\beg...原创 2020-03-08 11:35:33 · 765 阅读 · 4 评论 -
numpy 中 的 星乘(*) 和 点乘(.dot) 点积 和 向量乘法(外积)
测试向量与矩阵之间点乘和普通乘法测试数据>> vector = [1,2]>> matrix = [[1,2] [3,4]]>> vector * matrix[[1,4] 3,8]]向量矩阵向量矩阵...原创 2020-03-04 19:09:42 · 3185 阅读 · 0 评论 -
点积 与 余弦定理
点乘、点积,也叫数量积,几何表示为:a⋅b=∣a∣∣b∣cosθa \cdot b = |a||b|cos\thetaa⋅b=∣a∣∣b∣cosθ向量表示为:a⋅b=∑aibi=a1b1+a2b2a \cdot b=\sum{a_ib_i}=a_1b_1+a_2b_2a⋅b=∑aibi=a1b1+a2b2于是有∣a∣∣b∣cosθ=a1b1+a2b2=>cosθ=a1...原创 2020-03-04 17:45:31 · 2242 阅读 · 0 评论 -
一个 矩阵 A 的常见属性
属性矩阵A特征值λ\lambdaλ特征向量Ax=λxAx=\lambda xAx=λx列空间C(A)C(A)C(A)行空间R(A)R(A)R(A),C(AT)C(A^T)C(AT)零空间N(A)N(A)N(A)左零空间N(AT)N(A^T)N(AT)转置ATA^TAT行列式detAdet AdetA逆矩阵A−1A...原创 2020-03-04 14:38:36 · 1832 阅读 · 0 评论 -
消元法,矩阵零空间,自由变量,秩,上三角矩阵,简化行阶梯形式(rref)
有一张图,包含四个节点,五条边,其对应关系如下所示:根据此图,得到图的关联矩阵$A = $原创 2020-02-09 23:15:52 · 1394 阅读 · 0 评论