优先队列?我直接刷爆

优先队列(Priority Queue)


高频面试题

1.数据流中的第 K 大元素

🚀题目链接:LeetCode703.数据流中的第 K 大元素

题目:
设计一个找到数据流中第 k 大元素的类(class)。注意是排序后的第 k 大元素,不是第 k 个不同的元素。

请实现 KthLargest 类:

  • KthLargest(int k, int[] nums) 使用整数 k 和整数流 nums 初始化对象。
  • int add(int val)val 插入数据流 nums 后,返回当前数据流中第 k 大的元素。

示例:

输入:
["KthLargest", "add", "add", "add", "add", "add"]
[[3, [4, 5, 8, 2]], [3], [5], [10], [9], [4]]
输出:
[null, 4, 5, 5, 8, 8]

解释:
KthLargest kthLargest = new KthLargest(3, [4, 5, 8, 2]);
kthLargest.add(3);   // return 4
kthLargest.add(5);   // return 5
kthLargest.add(10);  // return 5
kthLargest.add(9);   // return 8
kthLargest.add(4);   // return 8

🍬C++ AC代码:

class KthLargest {
private:
    int q_size;
    priority_queue<int, vector<int>, greater<int> > q;

public:
    KthLargest(int k, vector<int>& nums) {
        q_size = k;
        for (int i = 0; i < nums.size(); i++)
            add(nums[i]);
    }
    
    int add(int val) {
        if (q.size() < q_size)
            q.push(val);
        else if (val > q.top()) {
            q.pop();
            q.push(val);
        }
        return q.top();
    }
};

Tips:

  • ⭐C++的标准库中包含了优先队列这种数据结构:priority_queue<T>,当泛型T仅为基本数据类型时,比如priority_queue<int>,默认是大顶堆,即最先出队的是队列中最大的元素;而本题中我们要使用的是小顶堆,即最先出队的是队列中最小的元素,可以这样声明:priority_queue<int, vector<int>, greater<int> > q
  • priority_queue<int>是大顶堆,等同于:priority_queue<int, vector<int>, less<int> > q
  • ⭐注意泛型的尖括号<>如果两个嵌套在一起,中间要用空格隔开,原因是>><<是右移与左移操作符,某些旧版的编译器会报错。

Java AC代码:

class KthLargest {

    private int k;
    private PriorityQueue<Integer> q;

    public KthLargest(int k, int[] nums) {
        this.k = k;
        this.q = new PriorityQueue<Integer>();
        for (int i = 0; i < nums.length; i++)
            add(nums[i]);
    }
    
    public int add(int val) {
        if (q.size() < k)
            q.add(val);
        else if (val > q.peek()) {
            q.poll();
            q.add(val);
        }
        return q.peek();
    }
}

Tips:

  • ⭐Java中的优先队列默认是小顶堆,刚好满足本题的要求,并且优先队列的初始容量默认是为11。

  • ⭐如果要声明大顶堆,需要在构造函数中传入一个比较器:

    //	创建一个大顶堆,默认容量为 11
    PriorityQueue<Integer> maxHeap = new PriorityQueue<Integer>(11, new Comparator<Integer>(){
    	@Override
    	public int compare(Integer i1, Integer i2){
        	return i2-i1;
    	}
    });
    

🍦Python AC代码:

class KthLargest(object):

    def __init__(self, k, nums):
        self.k = k
        self.q = []
        heapq.heapify(self.q)
        for num in nums:
            self.add(num)

    def add(self, val):
        if len(self.q) < self.k:
            heapq.heappush(self.q, val)
        elif self.q[0] < val:
            heapq.heapreplace(self.q, val)
        return self.q[0]

Tips:

  • ⭐Python的优先队列在heapq这个库中,heapq.heapify()可以原地把一个 list 调整成堆,同时默认为最小堆。
  • heapq.heappop()可以弹出堆顶,并重新调整。
  • heapq.heappush()可以新增元素到堆中。
  • heapq.heapreplace()可以替换堆顶元素。

2.滑动窗口最大值

🚀题目链接:LeetCode239.滑动窗口最大值

题目:

给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。

返回 滑动窗口中的最大值

示例 1:

输入:nums = [1,3,-1,-3,5,3,6,7], k = 3
输出:[3,3,5,5,6,7]
解释:
滑动窗口的位置                最大值
---------------               -----
[1  3  -1] -3  5  3  6  7       3
 1 [3  -1  -3] 5  3  6  7       3
 1  3 [-1  -3  5] 3  6  7       5
 1  3  -1 [-3  5  3] 6  7       5
 1  3  -1  -3 [5  3  6] 7       6
 1  3  -1  -3  5 [3  6  7]      7

示例 2:

输入:nums = [1], k = 1
输出:[1]

🍬C++ AC代码:

class Solution {
public:
    vector<int> maxSlidingWindow(vector<int>& nums, int k) {
        priority_queue<pair<int, int> > q;
        for (int i = 0; i < k; i++)
            q.push({nums[i], i});
        vector<int> res = {q.top().first};
        for (int i = k; i < nums.size(); i++) {
            q.push({nums[i], i});
            while (q.top().second <= i - k) {
                q.pop();
            }
            res.push_back(q.top().first);
        }
        return res;
    }
};

Tips:

  • ⭐本题要找最大值,使用大顶堆比较合适,并且C++的优先队列默认就是大顶堆。
  • ⭐在移动窗口时,优先队列顶端元素可能已经被移除窗口,因此需要同时将下标i和数值nums[i]同时放入优先队列,当队列顶端元素不在窗口内时就将其移除,直到队列顶端元素在窗口内。要将下标和数值绑定起来,C++中可以使用二元组pair实现。
  • ⭐优先队列默认以第一个元素作为权重,因此pair中两个元素的存放顺序很重要,first存放的是数值nums[i]second存放下标i

Java AC代码:

class Solution {
    public int[] maxSlidingWindow(int[] nums, int k) {
        int[] res = new int[nums.length - k + 1];
        PriorityQueue<int[]> q = new PriorityQueue<>(new Comparator<int[]>() {
			@Override
			public int compare(int[] o1, int[] o2) {
				return o1[1] != o2[1] ? o2[1] - o1[1] : o2[0] - o1[0];
			}
        });
        for (int i = 0; i < k; i++) {
            q.add(new int[]{i, nums[i]});
        }
        res[0] = q.peek()[1];
        for (int i = k; i < nums.length; i++) {
            q.add(new int[]{i, nums[i]});
            while (q.peek()[0] <= i - k) {
                q.poll();
            }
            res[i - k + 1] = q.peek()[1];
        }
        return res;
    }
}

Tips:

  • ⭐Java中没有像C++中的二元组来存储下标i和数值nums[i],可以使用数组来代替,数组的第一个元素存放下标i,第二个元素存放数值nums[i]。并且Java中的优先队列默认是小顶堆,因此需要自定义队列的比较器,优先比较数组的第二个元素,且数值越大优先级越高。
  • ⭐方法的返回值是int[]类型,需要确定好待遍历数组和待返回数组之间下标的对应关系。

🍦Python AC代码:

class Solution:
    def maxSlidingWindow(self, nums, k):
        n = len(nums)
        q = [(-nums[i], i) for i in range(k)]
        heapq.heapify(q)
        res = [-q[0][0]]
        for i in range(k, n):
            heapq.heappush(q, (-nums[i], i))
            while q[0][1] <= i - k:
                heapq.heappop(q)
            res.append(-q[0][0])        
        return res

Tips:

  • ⭐Python的代码直接参照了力扣的官方题解,应该是最简洁的代码了。
  • ⭐python没有可以直接使用的大顶堆。但是我们可以给列表中的元素加上负号,变成小顶堆,再在取数的时候再将其添加负号,就将小顶堆变成了大顶堆。

总结

┊人要是能活两次就好了,一次用来听话,一次用来反抗┊
-史迈《鱼猎》-
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值