感知器算法 有图

import numpy as np
import random
w0=0
w1=0
w2=0
n=0.01
e=2.72
E=1e-04
e0=10
e1=10
e2=10
x=np.array([[0,0,0],
           [0,1,0],
           [1,0,0],
           [1,1,1]])
# t=np.array([[0],
#            [0],
#            [0],
#            [1]])

for a in range(0,100):
    if e0<=E and e1<=E and e2<=E:
        w0=w0-n*e0
        w1=w1-n*e1
        w2=w2-n*e2
    else:
        j=random.randint(0,3)
        i=j
        z=w1*x[i,0]+w2*x[i,1]+w0
        s=1/(1+e**(-z))
        e0=2*(s-x[i,2])*(s**2)*(e**z)
        e1=2*(s-x[i,2])*(s**2)*(e**z)*x[i,0]
        e2=2*(s-x[i,2])*(s**2)*(e**z)*x[i,1]
print(w0,w1,w2)

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D   #绘制3D坐标的函数  
fig1=plt.figure()#创建一个绘图对象  
ax=Axes3D(fig1)#用这个绘图对象创建一个Axes对象(有3D坐标)  
X1=np.arange(0,2,1)
X2=np.arange(0,2,1) #在0到2前闭后开区间 生成步长为1的数
X1,X2=np.meshgrid(X1,X2) 
h=w0+w1*X1+w2*X2
plt.title("tu xiang") #图像标题
ax.plot_surface(X1, X2, h , rstride=1, cstride=1, cmap=plt.cm.coolwarm, alpha=0.5) #用取样点(x,y,z)去构建曲面
ax.set_xlabel('X1', color='r')
ax.set_ylabel('X2', color='g')
ax.set_zlabel('h', color='b')
plt.show()#显示模块中的所有绘图对象
0.23500000000000015 0.23500000000000015 0.23500000000000015

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值