bzoj 3343: 教主的魔法 分块

Description

教主最近学会了一种神奇的魔法,能够使人长高。于是他准备演示给XMYZ信息组每个英雄看。于是N个英雄们又一次聚集在了一起,这次他们排成了一列,被编号为1、2、……、N。
每个人的身高一开始都是不超过1000的正整数。教主的魔法每次可以把闭区间[L, R](1≤L≤R≤N)内的英雄的身高全部加上一个整数W。(虽然L=R时并不符合区间的书写规范,但我们可以认为是单独增加第L(R)个英雄的身高)
CYZ、光哥和ZJQ等人不信教主的邪,于是他们有时候会问WD闭区间 [L, R] 内有多少英雄身高大于等于C,以验证教主的魔法是否真的有效。
WD巨懒,于是他把这个回答的任务交给了你。

Input

第1行为两个整数N、Q。Q为问题数与教主的施法数总和。
第2行有N个正整数,第i个数代表第i个英雄的身高。
第3到第Q+2行每行有一个操作:
(1) 若第一个字母为“M”,则紧接着有三个数字L、R、W。表示对闭区间 [L, R] 内所有英雄的身高加上W。
(2) 若第一个字母为“A”,则紧接着有三个数字L、R、C。询问闭区间 [L, R] 内有多少英雄的身高大于等于C。

Output

对每个“A”询问输出一行,仅含一个整数,表示闭区间 [L, R] 内身高大于等于C的英雄数。

Sample Input

5 3

1 2 3 4 5

A 1 5 4

M 3 5 1

A 1 5 4

Sample Output

2

3

HINT

【输入输出样例说明】

原先5个英雄身高为1、2、3、4、5,此时[1, 5]间有2个英雄的身高大于等于4。教主施法后变为1、2、4、5、6,此时[1, 5]间有3个英雄的身高大于等于4。

【数据范围】

对30%的数据,N≤1000,Q≤1000。

对100%的数据,N≤1000000,Q≤3000,1≤W≤1000,1≤C≤1,000,000,000。

分析:对于修改,我们可以对两头进行直接加,然后排序,中间的打一个标记(不会影响序列的有序)。对于每个块二分出第一比c大的即可。

代码:

/**************************************************************
    Problem: 3343
    User: beginend
    Language: C++
    Result: Accepted
    Time:4780 ms
    Memory:20848 kb
****************************************************************/

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>

const int N=1e6+7;
const int maxn=1e3+7;

using namespace std;

int block,sum,belong[N],l[maxn],r[maxn],x,y,n,m;
long long add[maxn],a[N],b[N],c;
int i;
char op;

void kp(int l,int r)
{
    if (l>r) return;
    int i=l; int j=r;
    int temp;
    int key=b[(l+r)/2];
    while (i<=j)
    {
        while (b[i]<key) i++;
        while (b[j]>key) j--;
        if (i<=j)
        {
            temp=b[i]; b[i]=b[j]; b[j]=temp;
            i++; j--;
        }
    }
    kp(l,j);
    kp(i,r);
}

void build_block()
{
    block=trunc(sqrt(n))+1;
    sum=n/block;
    if (n%block) sum++;
    for (i=1;i<=sum;i++)
    {
        l[i]=(i-1)*block+1;
        r[i]=i*block;
    }
    r[sum]=n;
    for (i=1;i<=n;i++)
    {
        belong[i]=(i-1)/block+1;
        b[i]=a[i];
    }
    for (i=1;i<=sum;i++)
    {
        kp(l[i],r[i]);
    }
}

void updata(int x,int y,long long c)
{
    int j;
    int s=belong[x];
    if (belong[x]==belong[y])
    {
        for (j=l[s];j<=r[s];j++)
        {  
            a[j]+=add[s];
            if ((x<=j) && (j<=y))
            {
                a[j]+=c;
            }
            b[j]=a[j];
        }
        kp(l[s],r[s]);
        add[s]=0;
        return;
    }
    for (j=l[s];j<=r[s];j++)
    {
        a[j]+=add[s];
        if (x<=j)
        {
            a[j]+=c;
        }
        b[j]=a[j];
    }
    kp(l[s],r[s]);
    int t=belong[y];
    for (j=l[t];j<=r[t];j++)
    {
        a[j]+=add[t];
        if (j<=y)
        {
            a[j]+=c;
        }
        b[j]=a[j];
    }
    kp(l[t],r[t]);
    add[s]=add[t]=0;
    for (j=s+1;j<t;j++)
    add[j]+=c;
}

int ask(int x,int y,long long c)
{
    int j,ans=0;
    int s=belong[x];
    int t=belong[y];
    if (belong[x]==belong[y])
    {
        for (j=x;j<=y;j++)
        {
            if (a[j]+add[s]>=c) ans++;
        }
        return ans;
    }
    for (j=x;j<=r[s];j++)
    {
        if (a[j]+add[s]>=c) ans++;
    }
    for (j=l[t];j<=y;j++)
    {
        if (a[j]+add[t]>=c) ans++;
    }
    int k,ll,rr;
    for (j=s+1;j<t;j++)
    {
        ll=l[j]; rr=r[j]; k=r[j]+1;
        while (ll<=rr)
        {
            int mid=(ll+rr)/2;
            if (b[mid]>=c-add[j])
            {
                rr=mid-1;
                k=mid;
            }
            else ll=mid+1;
        }
        ans+=r[j]-k+1;
    }
    return ans; 
}

int main()
{ 
    scanf("%d%d",&n,&m);
    for (i=1;i<=n;i++)
     scanf("%d",&a[i]);
    build_block();      
    for (i=1;i<=m;i++)
    {
        scanf("%s",&op);
        if (op=='M')
        {
            scanf("%d%d%lld",&x,&y,&c);
            updata(x,y,c);
        }
        else
        {
            scanf("%d%d%lld",&x,&y,&c);
            printf("%d\n",ask(x,y,c));
        }
    } 
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值