Description
教主最近学会了一种神奇的魔法,能够使人长高。于是他准备演示给XMYZ信息组每个英雄看。于是N个英雄们又一次聚集在了一起,这次他们排成了一列,被编号为1、2、……、N。
每个人的身高一开始都是不超过1000的正整数。教主的魔法每次可以把闭区间[L, R](1≤L≤R≤N)内的英雄的身高全部加上一个整数W。(虽然L=R时并不符合区间的书写规范,但我们可以认为是单独增加第L(R)个英雄的身高)
CYZ、光哥和ZJQ等人不信教主的邪,于是他们有时候会问WD闭区间 [L, R] 内有多少英雄身高大于等于C,以验证教主的魔法是否真的有效。
WD巨懒,于是他把这个回答的任务交给了你。
Input
第1行为两个整数N、Q。Q为问题数与教主的施法数总和。
第2行有N个正整数,第i个数代表第i个英雄的身高。
第3到第Q+2行每行有一个操作:
(1) 若第一个字母为“M”,则紧接着有三个数字L、R、W。表示对闭区间 [L, R] 内所有英雄的身高加上W。
(2) 若第一个字母为“A”,则紧接着有三个数字L、R、C。询问闭区间 [L, R] 内有多少英雄的身高大于等于C。
Output
对每个“A”询问输出一行,仅含一个整数,表示闭区间 [L, R] 内身高大于等于C的英雄数。
Sample Input
5 3
1 2 3 4 5
A 1 5 4
M 3 5 1
A 1 5 4
Sample Output
2
3
HINT
【输入输出样例说明】
原先5个英雄身高为1、2、3、4、5,此时[1, 5]间有2个英雄的身高大于等于4。教主施法后变为1、2、4、5、6,此时[1, 5]间有3个英雄的身高大于等于4。
【数据范围】
对30%的数据,N≤1000,Q≤1000。
对100%的数据,N≤1000000,Q≤3000,1≤W≤1000,1≤C≤1,000,000,000。
分析:对于修改,我们可以对两头进行直接加,然后排序,中间的打一个标记(不会影响序列的有序)。对于每个块二分出第一比c大的即可。
代码:
/**************************************************************
Problem: 3343
User: beginend
Language: C++
Result: Accepted
Time:4780 ms
Memory:20848 kb
****************************************************************/
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
const int N=1e6+7;
const int maxn=1e3+7;
using namespace std;
int block,sum,belong[N],l[maxn],r[maxn],x,y,n,m;
long long add[maxn],a[N],b[N],c;
int i;
char op;
void kp(int l,int r)
{
if (l>r) return;
int i=l; int j=r;
int temp;
int key=b[(l+r)/2];
while (i<=j)
{
while (b[i]<key) i++;
while (b[j]>key) j--;
if (i<=j)
{
temp=b[i]; b[i]=b[j]; b[j]=temp;
i++; j--;
}
}
kp(l,j);
kp(i,r);
}
void build_block()
{
block=trunc(sqrt(n))+1;
sum=n/block;
if (n%block) sum++;
for (i=1;i<=sum;i++)
{
l[i]=(i-1)*block+1;
r[i]=i*block;
}
r[sum]=n;
for (i=1;i<=n;i++)
{
belong[i]=(i-1)/block+1;
b[i]=a[i];
}
for (i=1;i<=sum;i++)
{
kp(l[i],r[i]);
}
}
void updata(int x,int y,long long c)
{
int j;
int s=belong[x];
if (belong[x]==belong[y])
{
for (j=l[s];j<=r[s];j++)
{
a[j]+=add[s];
if ((x<=j) && (j<=y))
{
a[j]+=c;
}
b[j]=a[j];
}
kp(l[s],r[s]);
add[s]=0;
return;
}
for (j=l[s];j<=r[s];j++)
{
a[j]+=add[s];
if (x<=j)
{
a[j]+=c;
}
b[j]=a[j];
}
kp(l[s],r[s]);
int t=belong[y];
for (j=l[t];j<=r[t];j++)
{
a[j]+=add[t];
if (j<=y)
{
a[j]+=c;
}
b[j]=a[j];
}
kp(l[t],r[t]);
add[s]=add[t]=0;
for (j=s+1;j<t;j++)
add[j]+=c;
}
int ask(int x,int y,long long c)
{
int j,ans=0;
int s=belong[x];
int t=belong[y];
if (belong[x]==belong[y])
{
for (j=x;j<=y;j++)
{
if (a[j]+add[s]>=c) ans++;
}
return ans;
}
for (j=x;j<=r[s];j++)
{
if (a[j]+add[s]>=c) ans++;
}
for (j=l[t];j<=y;j++)
{
if (a[j]+add[t]>=c) ans++;
}
int k,ll,rr;
for (j=s+1;j<t;j++)
{
ll=l[j]; rr=r[j]; k=r[j]+1;
while (ll<=rr)
{
int mid=(ll+rr)/2;
if (b[mid]>=c-add[j])
{
rr=mid-1;
k=mid;
}
else ll=mid+1;
}
ans+=r[j]-k+1;
}
return ans;
}
int main()
{
scanf("%d%d",&n,&m);
for (i=1;i<=n;i++)
scanf("%d",&a[i]);
build_block();
for (i=1;i<=m;i++)
{
scanf("%s",&op);
if (op=='M')
{
scanf("%d%d%lld",&x,&y,&c);
updata(x,y,c);
}
else
{
scanf("%d%d%lld",&x,&y,&c);
printf("%d\n",ask(x,y,c));
}
}
}