题目描述
你突然有了一个大房子,房子里面有一些房间。事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子。在一开始的时候,相邻的格子之间都有墙隔着。
你想要打通一些相邻房间的墙,使得所有房间能够互相到达。在此过程中,你不能把房子给打穿,或者打通柱子(以及柱子旁边的墙)。同时,你不希望在房子中有小偷的时候会很难抓,所以你希望任意两个房间之间都只有一条通路。现在,你希望统计一共有多少种可行的方案。
输入输出格式
输入格式:
第一行两个数分别表示n和m。
接下来n行,每行m个字符,每个字符都会是’.’或者’’,其中’.’代表房间,’’代表柱子。
输出格式:
一行一个整数,表示合法的方案数 Mod 10^9
输入输出样例
输入样例#1:
2 2
..
..
输出样例#1:
4
输入样例#2:
2 2
*.
.*
输出样例#2:
0
说明
对于前20%的数据,n,m <= 3
对于前50%的数据,n,m <=5
对于前100%的数据,n,m<=9
有40%的数据保证,min(n,m)<=3
有30%的数据保证,不存在柱子
分析:很显然的矩阵树定理题,就是求生成树的个数。对于要取模的求行列式的题,可以先把矩阵中的数先取模,把负数变为正数,再高斯消元求行列式。因为求行列式公式就是一堆数相乘,所以取模不影响正确性。可以采用类似辗转相除的方式来消元。
代码:
#include <iostream>
#include <cstdio>
#include <cmath>
#define LL long long
const LL mod=1e9;
using namespace std;
int n,m,cnt;
char s[20];
int b[107][107],sum[107][107];
LL a[107][107];
int op(int x,int y)
{
return (x-1)*m+y;
}
int main()
{
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++)
{
scanf("%s",s);
for (int j=1;j<=m;j++)
{
if (s[j-1]=='.') b[i][j]=1;
else b[i][j]=0;
}
}
for (int i=1;i<=n;i++)
{
for (int j=1;j<=m;j++)
{
if (b[i][j])
{
cnt++;
sum[i][j]=cnt;
if (b[i-1][j])
{
int x=cnt;
int y=sum[i-1][j];
a[x][y]=mod-1;
a[y][x]=mod-1;
a[x][x]++;
a[y][y]++;
}
if (b[i][j-1])
{
int x=cnt;
int y=sum[i][j-1];
a[x][y]=mod-1;
a[y][x]=mod-1;
a[x][x]++;
a[y][y]++;
}
}
}
}
LL ans=1;
n=cnt-1;
for (int i=1;i<=n;i++)
{
for (int j=i+1;j<=n;j++)
{
while (a[j][i])
{
LL rate=a[i][i]/a[j][i];
for (int k=i;k<=n;k++)
{
a[i][k]=(a[i][k]-rate*a[j][k])%mod;
swap(a[i][k],a[j][k]);
}
ans=-ans;
}
}
ans=(ans*a[i][i])%mod;
if (a[i][i]==0) break;
}
printf("%lld",(ans%mod+mod)%mod);
}