bzoj 5093:[Lydsy1711月赛]图的价值 ntt

Description
“简单无向图”是指无重边、无自环的无向图(不一定连通)。
一个带标号的图的价值定义为每个点度数的k次方的和。
给定n和k,请计算所有n个点的带标号的简单无向图的价值之和。
因为答案很大,请对998244353取模输出。

Input
第一行包含两个正整数n,k(1<=n<=10^9,1<=k<=200000)。
Output
输出一行一个整数,即答案对998244353取模的结果。

Sample Input
6 5
Sample Output
67584000

分析:
式子就不推了。
a n s = n ∗ 2 ( n − 1 ) ( n − 2 ) 2 ∗ ∑ i = 0 n − 1 S ( k , i ) ∗ i ! ∗ ( n − 1 i ) ∗ 2 n − 1 − j ans=n*2^{\frac{(n-1)(n-2)}{2}}*\sum_{i=0}^{n-1}S(k,i)*i!*\binom{n-1}{i}*2^{n-1-j} ans=n22(n1)(n2)i=0n1S(k,i)i!(in1)2n1j
显然当 i &gt; k i&gt;k i>k时, S ( k , i ) = 0 S(k,i)=0 S(k,i)=0,所以只要算到 k k k
用ntt算出出第 k k k行斯特林数,组合数可以通过计算 n j c [ i ] = ∏ i = n − i + 1 n i njc[i]=\prod_{i=n-i+1}^{n}i njc[i]=i=ni+1ni来计算。
由于
S ( n , m ) = 1 m ! ∑ k = 0 m ( − 1 ) k ( m k ) ∗ ( m − k ) n S(n,m)=\frac{1}{m!}\sum_{k=0}^{m}(-1)^k\binom{m}{k}*(m-k)^n S(n,m)=m!1k=0m(1)k(km)(mk)n
化成卷积形式就是
S ( n , m ) = ∑ i = 0 m ( − 1 ) k k ! ∗ ( m − k ) n ( m − k ) ! S(n,m)=\sum_{i=0}^{m}\frac{(-1)^k}{k!}*\frac{(m-k)^n}{(m-k)!} S(n,m)=i=0mk!(1)k(mk)!(mk)n
感觉这个大家都知道了= =

代码:

/**************************************************************
    Problem: 5093
    User: liangzihao
    Language: C++
    Result: Accepted
    Time:14024 ms
    Memory:29416 kb
****************************************************************/
 
#include <iostream>
#include <cstdio>
#include <cmath>
#define LL long long
 
const int maxn=2e5+7;
const int maxp=6e5+7;
const LL G=3;
const LL mod=998244353;
 
using namespace std;
 
int n,m,len;
LL ans;
LL f[maxp],g[maxp],h[maxp],r[maxp],w[maxp];
LL jc[maxn],njc[maxn],inv[maxn];
 
LL power(LL x,LL y)
{
    if (y==0) return 1;
    if (y==1) return x;
    LL c=power(x,y/2);
    c=(c*c)%mod;
    if (y&1) c=(c*x)%mod;
    return c;
}
 
void ntt(LL *a,int f)
{
    for (int i=0;i<len;i++)
    {
        if (i<r[i]) swap(a[i],a[r[i]]);
    }
    w[0]=1;
    for (int i=2;i<=len;i<<=1)
    {
        LL wn;
        if (f==1) wn=power(G,(mod-1)/i);
             else wn=power(G,(mod-1)-(mod-1)/i);
        for (int j=i/2;j>=0;j-=2) w[j]=w[j/2];
        for (int j=1;j<i/2;j++) w[j]=w[j-1]*wn%mod;
        for (int j=0;j<len;j+=i)
        {
            for (int k=0;k<i/2;k++)
            {
                LL u=a[j+k],v=a[j+k+i/2]*w[k]%mod;
                a[j+k]=(u+v)%mod;
                a[j+k+i/2]=(u+mod-v)%mod;
            }
        }
    }
    if (f==-1)
    {
        LL inv=power(len,mod-2);
        for (int i=0;i<len;i++) a[i]=(a[i]*inv)%mod;
    }
}
 
void NTT(LL *a,LL *b,LL *c,int n,int m)
{
    len=1;
    int k=0;
    while (len<=n+m) len<<=1,k++;
    for (int i=0;i<len;i++) r[i]=(r[i>>1]>>1)|((i&1)<<(k-1));
    ntt(a,1),ntt(b,1);
    for (int i=0;i<len;i++) c[i]=(a[i]*b[i])%mod;
    ntt(c,-1);
}
 
int main()
{
    scanf("%d%d",&n,&m);
    n--;
    jc[0]=njc[0]=1;
    for (int i=1;i<=m;i++)
    {
        jc[i]=jc[i-1]*(LL)i%mod;
        njc[i]=(njc[i-1]*((LL)n-(LL)i+1))%mod;
    }
    inv[m]=power(jc[m],mod-2);
    for (int i=m;i>0;i--) inv[i-1]=inv[i]*(LL)i%mod;
    for (int i=0;i<=m;i++)
    {
        if (i&1) f[i]=(mod-1)*inv[i]%mod;
            else f[i]=inv[i];
        g[i]=power(i,m)*inv[i]%mod;
    }
    NTT(f,g,h,m+1,m+1);     
    for (int i=0;i<=min(n,m);i++) ans=(ans+h[i]*njc[i]%mod*power(2,(LL)n-i)%mod)%mod;
    ans=ans*(LL)(n+1)%mod*power(2,((LL)n*((LL)n-1)/2%(mod-1)))%mod;
    printf("%lld\n",ans);
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值