[BZOJ5093]图的价值-Stirling数-NTT

图的价值

Description

“简单无向图”是指无重边、无自环的无向图(不一定连通)。
一个带标号的图的价值定义为每个点度数的k次方的和。
给定n和k,请计算所有n个点的带标号的简单无向图的价值之和。
因为答案很大,请对998244353取模输出。

Input

第一行包含两个正整数n,k(1<=n<=10^9,1<=k<=200000)。

Output

输出一行一个整数,即答案对998244353取模的结果。

Sample Input

6 5

Sample Output

67584000


来练习stirling数~
然后进入天坑


思路:

首先考虑固定一个点,计算这个点的贡献。
考虑到这个点可以与其余的 n1 个点连边,且其他 n1 个点之间的连边并不需要去关心,那么有:

ansi=2(n1)(n2)2i=0n1(n1i)ik

于是
ans=n2(n1)(n2)2i=0n1(n1i)ik

前半部分显然可以快速计算,那么考虑后半部分。
现在咱们的目标就变成了化简如下式子

i=0n1(n1i)ik

首先使用拆开 xk 的方法:

xk=i=1k{ki}(xi)i!

具体原理详见 另一篇博客,这道题的第一步便是推导出这个式子~

那么原式变成了

i=0n1(n1i)j=1k{kj}(ij)j!

移项化简:

j=1k{kj}j!i=jn1(n1i)(ij)

考虑 i=jn1(n1i)(ij) 的组合意义,相当于从 n1 个物体里选择 i 个,再从选出的i个物体中选择 j 个,相当于从n1个物体中选择 j 个,其余可选可不选的方案数,即(n1j)2nj1

那么原式变为:

j=1k{kj}j!(n1j)2nj1

然后可以发现剩下的式子的唯一瓶颈便是stirling数的计算。

考虑stirling数的公式:

{nm}=1m!k=0m(1)k(mk)(mk)n

拆开组合数:
{nm}=1m!k=0m(1)km!k!(mk)!(mk)n

{nm}=k=0m(1)k1k!(mk)!(mk)n

向卷积的形式靠拢:
{nm}=k=0m(1)kk!(mk)n(mk)!

哇然后咱们可以卷积!
NTT直接上!

于是成功解决此问题!

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>

using namespace std;

typedef long long ll;

const int K=200009;
const ll md=998244353;

ll n,k,m,l;
ll fac[K],inv[K],ifac[K];
ll s[K<<2],a[K<<2],b[K<<2];
int rev[K<<2];

inline ll qpow(ll a,ll b)
{
    ll ret=1;
    while(b)
    {
        if(b&1)
            ret=ret*a%md;
        a=a*a%md;
        b>>=1;
    }
    return ret;
}

inline void init()
{
    fac[0]=1;
    for(ll i=1;i<K;i++)
        fac[i]=fac[i-1]*i%md;
    inv[K-1]=qpow(fac[K-1],md-2);
    for(ll i=K-1;i>=1;i--)
        inv[i-1]=inv[i]*i%md;
    ifac[0]=1;
    for(ll i=1;i<=k;i++)
        ifac[i]=ifac[i-1]*(n-i)%md;
}

inline ll c(ll a,ll b)
{
    return ifac[b]*inv[b]%md;
}

inline void NTT(ll *a,int n,bool f)
{
    for(int i=0;i<n;i++)
        if(rev[i]>i)
            swap(a[i],a[rev[i]]);
    for(int h=2;h<=n;h<<=1)
    {
        ll wn=qpow(3ll,(md-1)/h);
        if(f)wn=qpow(wn,md-2);
        for(int j=0;j<n;j+=h)
        {
            ll w=1ll;
            for(int k=j;k<j+(h>>1);k++)
            {
                ll x=a[k],y=w*a[k+(h>>1)]%md;
                a[k]=(x+y)%md;
                a[k+(h>>1)]=(x-y+md)%md;
                w=w*wn%md;
            }
        }
    }
    if(f)
        for(ll i=0,invn=qpow(n,md-2);i<n;i++)
            a[i]=a[i]*invn%md;
}

int main()
{
    scanf("%lld%lld",&n,&k);
    init();

    ll ans=0;    
    for(int i=0;i<=k;i++)
    {
        a[i]=((i&1)?(md-1ll):(1ll))*inv[i]%md;
        b[i]=qpow(i,k)*inv[i]%md;
    }
    for(m=1;m<=(k<<1);m<<=1)l++;
    for(int i=0;i<m;i++)
        rev[i]=(rev[i>>1]>>1)|((i&1)<<(l-1));

    NTT(a,m,0);NTT(b,m,0);
    for(int i=0;i<m;i++)
        s[i]=a[i]*b[i]%md;
    NTT(s,m,1);

    for(int j=0;j<=k;j++)
        (ans+=s[j]*fac[j]%md*c(n-1,j)%md*qpow(2,n-j-1)%md)%=md;

    ans=ans*n%md*qpow(2,(n-1)*(n-2)/2)%md;
    printf("%lld\n",ans);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值